Introduction to
Multidimensional Scaling

Ye konne by argumentes make a place
A myle brood of twenty foot of space
Cuaucer (The Reeve’s Tale)

Multidimensional scaling (hereinafter abbreviated to MDS) refers to a family of
models by means of which information contained in a set of data is represented by a
set of points in a space. These points are arranged in such a way that geometrical
relationships such as distance between the points reflect the empirical relationships
in the data. For example. the complex associations between a set of variables which
is contained in a matrix of correlations can be represented spatially by portraying
each variable as a point, placing them in such a way that the distances between
them reproduce the numerical value of the correlation coefficients. Thus, a picture
of the data is produced which is much easier to assimilate (visually) than a large
matrix of numbers. It may well also bring out features of the data which were
obscured in the original matrix of coefficients.

There are three crucial things which the researcher must consider in using
multidimensional scaling: .

-

(1) the data which prévide the information which is to be represented;

(i) the model which interprets the data in a particular way, e.g. as giving
information about the relative proximity of the objects;

(iii) the transformation which specifies which information in the data is to be
preserved in the solution—e.g. in the basic non-metric MDS model we seek to
reproduce only the rank-order of the entries in the data matrix.

These three characteristics will be used time and again to distinguish the varieties
of MDS.

1.1 An Example

Suppose a sample of subjects in a survey has been asked to compare a set of eight
legal offences, and to say for each one how unalike ( or dissimilar ) it is in terms of its
seriousness compared to each of the others in turn. The resulting data are presented
in Table 1.1: each entry in the table tells us the percentage of respondents who
judge the offence read across the row as being ‘very dissimilar’ to the offence read
down the column. in terms of their seriousness (thus. 63.4 per cent say that
receiving stolen goods and perjury are viewed as being very unalike in terms of
their seriousness). It is difficult to take in all the information contained in the 28
coeflicients. though some features are fairly obvious—Ilibel and perjury are clearly
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Offence 1 2 3 4 5 6 7 8
1 Assault and battery T(S—
2 Rape 21.1 (0)
3 Embezziement 712 54.1 (0)
4 Perjury 364 364 364 (0
5 Libel 52.1 541 521 0.7 (0
6 Burglary 89.9 752 364 541 530 (0)
7 Prostitution 530 730 752 5211 364 883 (0)
8 Receiving stolen goods 90.1 932 71.2 634 521 364 73.0 (0)

Table 1.1 Percentage of subjects saying offences are very unalike in their

serfousness
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Figure 1.1 Seriousness of offences: 2-D scaling of data of Table 1.1
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thought to be very much alike in the degree of their seriousness (as indicated by the
low degree of dissimilarity), whilst almost every respondent agrees that receiving
stolen goods and rape differ considerably.

The information can be represented—and absorbed—much more easily if we
now proceed to an MDS analysis. The data are first treated as distances, and then
scaled geometrically in two dimensions. as is done in Figure 1.1. In this diagram
(termed a configuration, or pattern, of points) the more dissimilar a pair of offences
is judged to be, the greater the distance between the points representing them.
Thus. as we have noted above. the distance between points 4 and 5 is the smallest,
and that between points 1 and 8 is the largest. Procedures for interpreting such
configurations are introduced in Chapter 4. but without prejudicing that account.
we may note that two fairly independent contrasts seem to underlie the
configuration—what might be called the relative heinousness of the offence (rape,
embezzlement vs receiving, soliciting). and the extent to which a crime is against
the person rather than against property (assault. soliciting cs burglary,
embezzlement).

This example. although based on fictitious data*, allows a number of points to
be noted:

(i) MDS is primarily concerned with representation—in this case with the
production of a simple and easily assimilated geometrical picture where distances
are used to represent the data.

(i) MDS models differ in terms of the assumptions they make about how
important the quantitative properties of the data are. In the example above, it is in
fact only the rank order of the data percentages which is matched perfectly by the
distances of the configuration. This is an example of ordinal scaling or, as it is more
commonly termed, non-metric scaling.

(ii1) A wide range of data and measures can be used as input. Any data which
can be interpreted as a similarity or a dissimilarity measure are appropriate for
scaling analysis.

1.2 Representation
Contemporary measurement theory sees the basic problems of measurement as
being: Representation, Uniqueness. Meaningfulness and Scaling.t

1.2.1 Measurement

Representation i1s concerned with the logic of measurement, that is, with the
necessary and sufficient conditions data must satisfy if the property they measure is
to be represented numerically, or in some other mathematical system. In this
account. measurement means choosing an appropriate mathematical model to
represent that part of the world in which one is interested. ensuring that the
properties of the empirical system are reflected in the mathematical system.

* Adjudged seriousness of offences has long been studied by scaling methods (Thurstone 1927; Coombs
1967). and the use of percentages as a measure of association also has a long history. This artificial set of
data is used again in subsequent chapters.

tSee Suppes and Zinnes 1963; Adams 1966; Ellis 1966; Krantz et al. 1971, for definitive accounts of
modern measurement theory, and Coombs et al. 1970, part 1, for a lucid and simplified account.
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In the context of MDS, the range of models available for representing a
particular set of data is often wide. Any particular model or scale which we choose
for representing our data consists, in essence, of‘'a theory about the empirical
system we are studying., and like any other theory it necessarily embodies
restrictive assumptions. We buy information about our data by making such
assumptions, but at a cost: more complex and quantitative measurement demands
more restrictive assumptions.

In point of fact. the assumptions which measurement models make are rarely
met in any real set of data. and the strict representationalist position serves more as
a future hope than as a present help.

Index measurement

Strictly speaking, the failure of a set of data to satisfy the axioms of a measurement
model means that, at best, one has achieved ‘index measurement’ (cf. Dawes 1972,
p. 91 et seq., pp. 146-8), i.e. the properties of the numbers assigned In
measurement do not necessarily imply anything about the properties of the objects
being indexed, unlike in the paradigm of representational measurement where
there is a direct correspondence between the properties of the empirical svstem and
the numerical measurement system.

The logical force of the representational account is such that a single error would
falsify the model. Faced by such a strict requirement one needs either to add a
theory of error to a measurement model (indicating how many exceptions can be
accepted before the model is abandoned). or view representational measurement
simply as an ultimately desirable goal. Moreover, given the heavy dependence of
empirical research on index measurement—and on the ‘ubiquitous rating scale’ in
particular*—it is hard to maintain so uncompromising a position. For some
models in MDS. represeniational measurement is possible and tests can be made
on the data. For others this is not so. but so long as unjustified measurement claims
are not made for the solution, and so long as tests of axioms are made where they
exist, it is entirely reasonable to use procedures such as MDS. In the case of the
distance model, there is further pragmatic justification. When MDS is used as a
method of data reduction and/or a graphical device for displaying structure in data
(see Everitt 1978), its use is very like any other form of descriptive statistics used to
portray similarity, such as histograms and scatter diagrams, where we use our
intuitions and knowledge about our three-dimensional world to grasp information
about the data we analyse. Whilst this may not amount to representational
measurement or strict inference, it rightly counts as exploratory analysis. or what
Gnanadesikan (1973) refers to as ‘informal inference’.

1.3 Uniqueness and Scale Type

Once a property or relation has been measured, there is still a degree of
arbitrariness in the actual scale values assigned. Any reallocation of numbers which
preserves the crucial information in the original scale values is termed a
transformation, or a re-scaling. The so-called uniqueness problem can be reduced
to a simple question: what sort of transformation is legitimate, in the sense that it

*Dawes (1972, p. 96) cites the fact that 61 per cent of 172 experimental studies in a year’s issue of the
Journal of Personality and Social Psychology used rating scales as the dependent variabie. and in over a
third of these articles, rating scales were the only data used for the dependent variable.
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leaves the properties of the original relation (or property) unchanged? Put slightly
differently: how unique are the original scale values?

Based upon the notion of ‘legitimate transformation’, a number of typologies of
the "degree of uniqueness’. or ‘levels of measurement” have been proposed. The
most long-lived classification is that of Stevens (1946) which distinguishes nominal,
ordinal, interval and ratio levels of measurement. This simple typology has certain
appealing features—it forms a cumulative hierarchy, in the sense that each level
includes as a subset those beneath it. and it includes those levels which are of most
concern in MDS, namely ordinal (which is the usual level of input data) and ratio
(which 1s the level at which distance 1s measured).

The original typology has been subject to a good deal of methodological
criticism and elaboration. especially in the form of adding further ‘non-metric’
scale tvpes between the nominal and interval levels and in distinguishing between
different types of ordinal scale. For our purposes it is useful, first. to extend the
basic typology to cover all those scales mentioned in this book and secondly, to
make some important distinctions between types of ordinal scale.

Shepard (1972. p. 7) has provided a very useful extension of this basic typology
which is reproduced with slight changes in Table 1.2 and Figure 1.2. Our interest
will focus principally upon the variants of the ordinal scale, and to this we now

turn.

1.3.1 Types of ordinal scale
[t is important to distinguish strict. partial and weak order.

(1) Strict ordering ( alternatively called a strong order or chain; Stevens’ ordinal
scale )

Information is complete (i.e. exists about all pairs of objects). The pairwise data are
irreflexive. asymmetric and trinsitive and thus can be represented as a single
ordering. ’

(i1)  Partial order
Information 1s incomplete and in such a case the objects cannot be reduced to an
unambiguous single ordering.

Partial ordering often results from missing data. and since this is a fairly
common occurrence in MDS analysis we shall need to know about such things as
how many missing data can be tolerated before a solution becomes unstable, and
whether systematic missing data (for example., most of the information referring to
one point) is more dangerous than more randomly occurring omissions. These
points are discussed below.

(i) Weak order
In this case. information is complete. but some objects occur at the same level of
ordering instead of being each at a distinct level, as in the strict order.

Weak orders often arise in preference judgments, where, because two objects are
so similar, a person may say both that she prefers a to b and later that she prefers b
to a. Usually this would be considered as an ‘indifference’ relation, meaning that
the difference between the two objects is too small to be significant or reliable (see
Luce’s (1956) theory of preference semi-orders for such a model).
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Figure 1.2 Diagrammatic classification of scale types

More commonly, weak order arises because only a few values are used in a
rating scale. The significant questions are: how many distinct values must appear 1n
a matrix for a solution to be possible; and, are tied values in the data to be re-scaled
into tied values in the solution, or not? (In MDS, this is referred to as the secondary
and primary approach to ties). These questions are taken up in section 3.2.2.
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(iv) Ordered metric scales

A further addition to the original Stevens’ typology is the ‘ordered metric’ scale
between the ordinal and interval level of measurement (Coombs 1950) for the
situation where there is both an ordering between the points. and also information
on the order of the magnitude of at least some of the constituent intervals. This
scale type is termed ‘ordered metric’ because such pairwise differences provide
information on the order of the magnitude of the differences.

The distinctions between these various types of ordering are important in
understanding a number of points which arise in non-metric MDS. In particular
they become crucial when considering what aspects of order information in the
data the user wishes to see represented in the solution (see 3.2.3).

1.4 Ordinal Scaling

In the basic MDS model which we shall be discussing. the scaling problem consists
of locating a set of points (one to represent each object) in a space in such a way
that the information in the data is represented as faithfully as possible by the
separation or distance between the points. Information of a purely ordinal kind—
such that rape is considered more serious than larceny—places very few
restrictions on where the points can be positioned in conformity with the data. By
contrast, a matrix of dissimilarity coefficients can Be interpreted. as we shall see. as
providing ordered metric information about the rank order of the differences
between pairs of objects—for instance. that burglary and rape differ more in
seriousness than perjury and libel. In this case the distances of the solution will be
required to conform to the same rank order as the entries in the data matrix. This
imposes more severe restrictions on the positions which the points can occupy in
the solution space. The point locations thus become more and more fixed as more
order restrictions are applied, and this results in a more stable configuration.

In this scaling process, which is described in considerable detail in section 3.5.
two important considerations arise which are concerned with problems of levels of
measurement. First, the basic input data are usually in the form of a symmetric
matrix of similarities or dissimilarities measures. If the researcher wishes only the
order of the entries in the matrix to be used in arriving at the solution. then this is
called non-metric (Shepard 1962, Kruskal 1964) or ordinal scaling (Sibson 1972).

A second way of looking at this scaling process is to take the original data as
initial values, and to try to find a permissible transformation into a ‘better behaved’
set of re-scaled values, such as Euclidean distances. In the present case. the
transformation which is considered legitimate is ordinal or monotonic. since only
the order of the data is being preserved. It is a little harder to define precisely what
‘better behaved’ means. Loosely, it means that the re-scaled values will have more
desirable (and preferably metric) properties than the input data. In particular. if the
original data can be ordinally re-scaled in such a way that they become Euclidean
distances, then it will be possible to represent the data as a configuration of points
in a Euclidean space.

There is a danger that such a procedure may appear to be a magical device for
turning ordered metric data into ratio level data (distances). In case the researcher
suspects that MDS consists of a statistical sleight of hand, it should be emphasised
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that a perfect ordinal transformation will rarely be found in practice. Instead, the
researcher will have to decide how great a departure from a perfect ordinal
rescaling can be tolerated before deciding that the data cannot be legitimately
transformed (scaled). In Coombs’ terms, the lack of fit between the original data
and the re-scaled values is one of the costs that has to be paid to obtain the
solution. For non-metric scaling, the cost is a good deal less than it is for metric
scaling, where the data are assumed to be at least interval level.

1.5 Applications of MDS

Articles and books using MDS are now appearing at an ever-increasing rate and in
a growing number of disciplines. By and large, the area of application has its
historical origin in psychology. and has diffused principally into the social sciences.

Even ten years ago it was possible to publish an extensive—and probably a fairly
exhaustive—bibliography of over 300 MDS applications in the Bell Bibliography
(1973). It is now becoming a Herculean task even to keep track of applications
within a single discipline.

Probezbly the best and most accessible source of new publications is contained in
the annual literature search produced by the Classification Society, which uses a
‘key" of classic MDS articles to identify articles which cite one or more of them.

In our book, a number of relevant applications will be included in each chapter
and further examples are included in the User Manual reports for each program in
the MDS(X) series.

Careat lector

Since MDS can be used on a very wide range of data, Chapter 2 is devoted to
discussing the general notion of a ‘distance measure’ and providing instances of the
wide variety of types of data which may be used as input to MDS. The user will find
it usetul to skip Chapter 2 at firstxeading and come.back to it at a later stage. Initially
it may well seem to be a fong catalogue of possible measures. However, Chapter 2
should be read at some point. since it provides important clues about how virtually
any sort of data can be viewed as giving information suitable for MDS analysis.



