Section 1
ORIENTATION

1 Representation of Structure in Similarity Data:
Problems and Prospects*
Roger N. Shepard

Editors note

The first part of this article, which was Professor Shepard’s Presidential
address to the Psychometric Society, being an introductory excursus such
as fs customary on such occasions, has been omitted from the present
volume.

On the basis of extensive first-hand experience with non-metric multi-
dimensional scaling and examination of a large number of reports by other
investigators using this type of method, I believe the following six problems
to be most in need of further attention.

1. The problem of attaining the globally minimum departure from
monotonicity (primarily the problem of avoiding merely local minima).
The preblem of achieving a meaningful substantive interpretation
of the spatial configuration.

3. The problem of determining the proper number of dimensions for
the coordinate embedding space.

4. The problem of avoiding undesirable loss or extraneous imposition
of structural information (especially the so-called problem of
“degeneracy”’).

5. The problem of determining the form of the underlying metric
(particularly the form of the rule governing how differences along
two or more underlying dimensions combine to yield the overall
similarity between two objects).

6. The problem of representing discrete or categorical structure (in
view of the fact that the scaling model assumes a continuous under-
lying coordinate space).

)

I proceed, now, to consider each of these six problems in turn. For each
I shall attempt, under the subheading “Problem,” to define and to illustrate
the nature of the problem and some of its aspects and then, under the sub-
heading “Prospects,” to suggest some directions in which T think a way of
overcoming that problem might profitably be sought.

*reprinted from Psychometrika, 39, (4), 1974, pp. 373-421
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1. Attaining the Globally Minimum Departure from Monotonicity
Problem

All existing methods for nonmetric multidimensional scaling use some
variant of the steepest descent or gradient method to minimize the chosen
measure of departure from monotonicity. This is not because gradient
methods guarantee either quick or certain achievement of the desired min-
imum; they do not. The choice is dictated, rather, by the present lack of a
viable alternative for this particular class of large and nonlinear numerical
problems. In fact the gradient method has two rather frustrating properties.
First, convergence tends to become quite slow as a minimum point is ap-
proached—unless, perhaps, recourse is taken to second-order methods.
But, owing to the enormously greater demands that second-order methods
place on computer memory, they are apt to be prohibitive, except in the
case of a relatively small matrix of data or of an exceptionally large computer.
Second, entrapment in an undesired, merely local minimum is not unlikely—
unless the initial configuration is constructed so as to fall (with sufficiently
high probability) within the vicinity of the desired global minimum. But
to ensure this is to solve, by some other means, a very large part of the
problem of optimization itself.

The problem of entrapment in merely local minima is the more trouble-
some of the two because, rather than merely resulting in a delayed attainment
of the absolute minimum, it can result in a failure to attain that minimum
at all. I must confess to having underestimated the seriousness of the prob-
lem when, in previous papers, I have glibly remarked that, if a local minimum
is suspected, one can always try a number of random starting configurations
and simply take, as the absolute minimum solution, the one that (repeatedly)
turns up with the same smallest value of departure from monotonicity
{“stress’). Unfortunately, according to recent much more extensive experience
{particularly by my former student and colleague Phipps Arabie), although
the absolute minimum s often attained within the first four or five random
starts, to be quite safe at least 20 different starts should be used if a Euclidean
solution is sought. (Indeced, in the case of one set of data, the globally op-
timum Eueclidean solution failed to emerge at all until the 26th random try!)
And, as we shall see, in the ease of severely non-Euclidean metries such as
the so-called city-block or dominanece metrics, the situation is very much
WOrse.

Ironically, local minima pose especially prevalent and therefore irksome
obstacles to the attainment of the optimum configuration in what might
otherwise seem to be the simplest case; vizg,, that of a one-dimensional space.
Theoretical analysis confirms what has become clear from practical ex-
perience. Evidently, a point that is initially situated on the wrong side of
some other points can gradually work its way around those other points in
a space of two or more dimensions but, when confined to a single line, is
unable to move through those points owing to forces of mutual repulsion.
Even in published studies, one-dimensional solutions have been presented
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that I can show to correspond to such merely local minima.

A widely advocated remedy for the problem of local minima is, of course,
the use of rationally constructed initial configurations instead of configura-
tions generated either arbitrarily or purely at random. Generally, such
rational starting configurations have been obtained by procedures derived
from the classical metric approach to multidimensional scaling perfected
by Torgersen [1952]. The hope is that such metric solutions will be sufficiently
close to the global minimum for the nonmetric method to avoid entrapment
in other merely local minima (cf., Young and Torgerson [1967]). Possibly
such procedures will eventually be modified to the point where they can be
demonstrated to be uniformly satisfactory. However, in the experience of
my associates and myself (e.¢., [Arabie, 1973] and [Arabie & Boorman, 1973]),
the ability of available procedures of this type to circumvent local minima
has so far been disappointing—particularly so In cases of non-Euclidean
metrics, one-dimensional spaces, and the highly nonlinear relations between
similarity and distance that are characteristic of the types of behavioral
data with which I have often been concerned (viz., those of confusion [Shepard,
1957b, 1972¢], association [Shepard, 1957a], or reaction time [Shepard,
¢t al., in press]).

Incidentally, the prevalence of the local-minimum problem implies that
conclusions drawn from “Monte Carlo” investigations (e.g., of stress, dimen-
sionality, or alternative methods and programs) should be received with
caution unless adequate assurances are provided that the reported statistics
are not contaminated by the undetected occurrence of suboptimal solutions.
I believe that Arabie [1973] is justified in suggesting (a) that several studies
purportedly ecomparing different methods (viz., M-D-SCAL, TORSCA, and
SSA) sueceeded only in demonstrating the undesirability of a certain type
of initial configuration (viz., the arbitrary L-shaped configuration used in
early versions of M-D-SCAL), and (b) that the stress values reported even
in some of the most useful Monte Carlo studies {Klahr, 1969; Stenson and
Knoll, 1969] are inflated to an unknown extent.

Prospects

In the absence of a promising alternative to the gradient method for
minimizing the chosen measure of departure from good fit, the judicious
selection or construetion of the initial configuration does seem to offer the
best hope for ensuring convergence to the desired global minimum. However,
since it is not yet clear which of a number of possible ways of doing this will
eventually prove most uniformly efficient and successful, several quite
different possibilities should be pursued. Currently, these appear to divide
into two general classes. In one, the construction of an initial configuration
that is sufficiently ciose to the globally minimum configuration is attempted
within the space of specified, low dimensionality in which a solution is being
sought. In the other, a completely unbiased configuration is first constructed
in a space that is either sufficiently high-dimensional [Shepard, 1962a] or
non-dimensional [Cunningham & Shepard, 1974] to make this possible and,
then, a smooth and presumably trap-free mapping of this unbiased con-
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figuration is attempted down into the specified low-dimensional target space,

With respect to the first of these two classes, several quite different
approaches to the construction of a rational starting configuration appear
worthy of further exploration. Within the spirit of those already in existence,
is the approach—apparently first considered by Torgerson himself (persenal
communication)—in which a metric multidimensional scaling procedure
based upon a parametrically specified, smooth functional relation between
similarity and distance is alternated with a reestimation of the parameters
of the functional relation. Then, when this preliminary iterative process
becomes suitably stationary, the resulting configuration can be used to
start the iterative process of the nonmetric method itself. Alternatively,
some combinatorial method of arriving at an optimal assignment or permuta-
tion of the objects with respect to points in a pre-established configuration
or ordering might prove desirable-—particularly when the target space has
only one dimengion or, possibly, has a Minkowski power metric of one of the
two limiting forms (r = 1 or ¥ = ). Finally, there is the related possibility
of building up the starting configuration by finding a near-optimum placement
for cach point individually as the points are added to the configuration,
one at a time. In particular, if each suecessive point is allowed to migrate
in from an extra dimension orthogonal to the space in which the rest of the
configuration is confined, there should be no reason for any point to become
trapped on the wrong side of any other points.

The technique of dimensional compression that I incorporated in my
original method of “analysis of proximities’’ [Shepard, 1962a] belongs in the
second of the two above-mentioned general classes of methods for generating
initial configurations. It can however be regarded as carrying out the just-
described point-by-point inward migration—but on all n points simul-
tancously. Such a way of looking at that method may help, moreover, to
clarify why that method is not susceptible to entrapment in unwanted local
minima. To start with, the » points are arranged as the vertices of a regular
simplex in n — 1 dimensions. This is a completely unbiased configuration
in which all n{n — 1}/2 interpoint distances are equal. As iteration proceeds,
the variance of the distances is systematically inereased by stretching dis-
tances that should be large and shrinking distances that should be small.
The net effeet is that each point migrates towards its optimum location
within the hyperplane of the (n - 2} dimensional simplex defined by the
other n — 1 points in such a way as to instate and maintain the desired
rank order of the distance from that point to each of the n — 1 other points.
Clearly, there is again no reason for any point to become trapped in an in-
appropriate region. Experience reinforces our theoretical expectation that
this process becomes stationary when all points have mutually gravitated
into close proximity of the lowest dimensional hyperplane within which
a good monotone fit to the similarity data is still possible. Rotation to prin-
cipal axes then enables elimination of the superfluous dimensions, leaving
us with the desired coordinates for the dimensionally-reduced and trap-free
starting configuration.

Although this method requires that the » points be initially embedded
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in a space of n — 1 dimensions, the efficiency of the method and its invul-
nerability to entrapment may more than offset the disadvantage of having
to carry along n{n — 1) coordinates during these preliminary iterations,
I know of no case in which this procedure has led to a merely local minimum.
And, illustrative of its efficiency, for the first significant set of data analyzed
by this method (viz., Ekman’s [1954] data on the judged similarities among
14 spectral colors), a highly satisfactory, virtually two-dimensional starting
configuration was achieved in just two iterations [Shepard, 1962b).

A final alternative, which has close conceptual relations to the approach
just considered, is offered by the method of “maximum variance nondimen-
sional scaling” recently developed by my student, Jim Cunningham, and
myself [Cunningham & Shepard, 1974]. This method finds that set of (gen-
cralized) distances among the n points such that (a) the distances satisfy
only the metric axioms (positivity, symmetry, and triangle inequality)
and such that (b) an appropriate balance is achieved between maximization
of the variance of those distances and approximation to a monotone relation
of the distances to the given similarity data. The distances are not required
to satisfy the much stronger conditions entailed by embedding the points
in a coordinate space of the FEuclidean, Minkowskian, or any other variety.
Owing to its coordinate-free and nondimensional nature, the obtained repre-
sentation is, like the high-dimensional representation just considered, not
subject to entrapment in merely local minima. But, owing to the device
of maximizing variance, the obtained distances tend, where possible, toward
consistency with a low-dimensional representation. Accordingly, purely
linear metric multidimensional scaling based upon those distances should
yield a near-optimum initial configuration for nonmetric multidimensional
scaling. Unfortunately, convergence has so far proved to be rather slow
with this method. 8o it remains to be seen whether the efficiency of this
approach can be improved to the point where it becomes a practical com-
petitor of my original method of dimensional compression.

2. Achieving a Meaningful Substantive Inlerprefation
FProblem

The substantive interpretation of a spatial configuration obtained by
multidimensional scaling is usually a matter of paramount importance.
Typically, in fact, such an interpretation is the end result which the in-
vestigator is seeking and which, to the extent that it is meaningful and
enlightening, justifies the often rather costly computations from which
it derives. In addition to its importance for its own sake, moreover, the
interpretability of the configuration often plays a crucial role in determining
whether the obtained solution is valid and, particularly, whether it has
been embedded in a space of the appropriate number of dimensions.

In view of its importance, it 1s distressing to see that this matter of
interpretation is still sometimes neglected or mishandled in some way. In
some cages, a spatial configuration of some number of dimensions has simply
been presented without any compelling interpretation. For, even when an
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acceptably small measure of departure from monotonicity (stress) is achieved, -
in the absence of such an interpretation one can not determine (a) that the
number of dimensions retained is appropriate or (b) that the configuration
itself is valid (and not heavily determined by some mixture of random
fluctuations in the data, degeneracy, and/or a merely local minimum]).

In the worst cases, an overriding preoccupation with the reduction
of stress to some desired level has led to solutions in four or more dimensions
(a) where the configuration can not be visually apprehended and is probably
not statistically reliable anyway, and even (b) where attempts at substantive
interpretation, if any, have often been based solely on the coordinates for
the points as they are printed out with respect to the unrotated axes of
the solution. Such an approach to interpretation fails to appreciate two
facts: First, except in certain special cases of non-Euclidean metrics, (o-
of methods of individual difference scaling [Carroll, 1972a] beyond the scope
of this paper), the axes of the obtained configuration are entirely arbitrary.
And sccond, even when appropriately rotated, axes do not necessarily offer
the most interpretable features of a configuration.

Prospects

What seems to be most immediately needed, are efforts to educate
potential users of multidimensional scaling concerning such matters as
substantive interpretation, rotation of axes, and minimization of stress
versus minimization of dimensionality. This paper is in part intended as
one such effort. Some specific suggestions that may be helpful to some users
are the following: First, always try for a solution in a space of three or,
preferably, fewer dimensions where the spatial structure of the entire con-
figuration can be scen and interpreted directly (rather than through the
coordinates of the points on arbitrary axes). Seeond, when a representation
in three or more dimensions ean be shown to be both reliable and desirable,
try objective methods for finding the most interpretable, rotated axes through
the resulting high-dimensional space. {An excellent survey of such objective
methods has been prepared by Carroll [1972b]. Less complete and up-to-date,
though perhaps more readily available, is my own brief overview [Shepard,
1972b, pp. 39-43).) Third, search for any interpretable features of the spatial
configuration—including clusters and circular orderings, as well as the linear
ordering provided by (rotated) rectilinear axes.

Some concrete examples may help to illustrate the usefulness of searching
for interpretable features other than axes. In fact the first significant applica-
tion of nonmetric multidimensional scaling {again, my reanalysis of Ekman’s
[1954] data on 14 spectral colors, [Shepard, 1962b]) led to a quasi-circular
configuration (similar to that presented in Fig. 7D) in which there was a
perfect agreement between the ordering of the points around the circle and
the ordering of the corresponding colors with respect to wave length. In
this and some subsequent, quite different applications, interpretation in
terms of a circular dimension (akin to Guttman’s [1954] “circumplex’”)
seems as inviting as interpretation in terms solely of rectilinear dimensions.

In Fig. 1 I exhibit the two-dimensional result of a nonmetric analysis
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of data (which I had originally collected in 1853) on the strengths of mental
associations among 16 familiar kinds of animals. Subjects were asked simply
to list as many kinds of animals as they could think of in ten minutes For
the 16 most frequently listed kinds, I used, as a measure of the associative
distance between the two items in each pair, a nonlinear average of the
numbers of intervening items between those two items in the lists returned
by the individual subjects.

In a first attempt tu analyze association data by multidimensional
scaling, T then applied the metric method deseribed by Torgerson [1952, 1958]
to these distance-like numbers in order to obtain a spatial representation
for the 16 kinds of animals [see Shepard, 1957a]. At that time I obtained
a three-dimensional representation in which {following Osgood, Suei, and
Tannenbaum 1957] I tentatively interpreted the three axes, after appropriate
rotation, as dimensions of size, potency, and activity. However, even though
similar three-dimensional configurations were independently recovered from
the data for two random subsets of the subjects, and even though subsequent
studies have independently come up with a dimension of size and a dimension
{of “predacity'’) that is obviously related to potency [see Rips, et al., 1973],
I did not at the time feel that the interpretations of the three axes sufficiently
enlightening to warrant publication of the three-dimensional spatial con-
figuration itself.

More recently, I have reanalyzed the very same set of measures of
assoclative distance by nonmetric methods of multidimensional scaling and
hierarchical clustering (using, specifically, M-D-SCAL [Kruskal, 1964a, b],
HICLUS [Johnson, 1967], and embedding the clustering into the spatial
representation as advocated in Shepard [1972c]). The two-dimensional
solution (Fig. 1} provided a satisfactory monotone fit to the assoeiation
data and, also, was consistent with the (nondimensional) clustering result—as
is indicated by the faet that the obtained clusters could be uniformly repre-
gented by smooth, convex, nonoverlapping contours, The principal point
that I wish to make here, however, is that the way in which the points repre-
senting the kinds of animals cluster together in the spatial representation
appears to be far more readily and compellingly interpreted than the order
in which those points project onto any axes passing through this spatial
representation. In some cases, the specific interpretative label printed in
the figure may be open to dispute; e.g., the label “Jungle Beasts” for lion,
tiger, and elephant. But in every case the concept—as opposed to the verbal
label—is, 1 hope, clear. Other examples in which clusters as well, possibly,
as axes seem particularly susceptible to substantive interpretation will be
presented in connection with later issues (see Figs. 8 and 13).

3. Determining the Proper Number of Dimensions

Problem

In my opinion, widespread practices and recommendations concerning
the determination of dimensionality are tending to detract from the use-
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fulness of multidimensional sealing. I believe that users, more often than
not, are inclined to err in the direetion of extracting too many dimensions.
This inclination seems to be attributable to certain prevalent misconceptions
about the nature of nonmetric multidimensional scaling and about the

implications of Monte Carlo studies.
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Fraure 1
Two-dimensional spatial representation of the concepts of 16 animals, with embedded

hierarchical clustering, based upon measures of association from a free-recall experiment

by Shepard [1957a].
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First, many users tend to place undue emphasis on the numerical value
of the measure of departure from monotonicity (stress) to the virtual ex-
clusion of much more important considerations of the statistical stability
and substantive interpretability of the obtained configuration, In part,
this may stem from an unfortunate tendency of users to accept, a bit too
literally, the evaluative labels (“excellent,” “good,” ‘“fair,”” and “poor’)
that Kruskal [1964a] once associated with particular numerical levels of
stress. (Nobody likes to submit for publication a result that is only “fair”
or “poor”!) Second, Monte Carlo studies, which generally recommend the
extraction of more rather than fewer dimensions, are often limited in one
or both of two respects: (a) they place excessive emphasis on approximating
an underlying (artificially constructed) configuration (which the unprocessed
similarity data themselves already do quite well!), while they disregard the
more important considerations of stability and accessibility to substantive
interpretation, and (b) they report mean stress values that in some cases
may be inflated owing to the undetected occurrence of suboptimal solutions.
Third, there has been a pervasive failure, even among otherwise sophisticated
investigators, to recognize the guises under which a basically one-dimensional
case can appear to the unwary to be two- or even three-dimensional.

As just one illustration of this last phenomenon, I present in Fig. 2A
a two-dimensional representation that Levelt, Van de Geer, and Plomp
[1966] obtained by a nonmetric analysis of the judged similarities among 15
aurally, presented musical intervals. They attempted (without striking
success, 1 feel) to give substantive interpretations to the two orthogonal
dimensions of this representation and even to the third dimension of a three-
dimensional solution as well. (Their interpretive effort included the fitting
of a parabola—displayed, here, by the dashed curve—to the two-dimensional
configuration.) To me, however, two aspects of this solution strongly suggest
that the data should be represented in a one-dimensional space. First, the
points fall essentially on a C-shaped curve that is very similar to the semi-
circular configuration that, under the permissible monotone transformations
of the interpoint distances is equivalent to a one-dimensional straight line
[Shepard, 1962a, p. 130]). And second, the ordering of the points around this
curve {as indieated by the solid curve terminating in an arrowhead) agrees
nearly perfectly with an obvious physical property of the intervals—namely,
their separation in terms of number of intervening half-tones on the musical
scale.

A completely independent solution, shown in Fig. 2B, is based upon
similarity data that a former student of mine, Christopher Wickens, collected
for his 1967 undergraduate honors thesis at Harvard before either of us
knew of the study by Levelt et al. Although Wickens' experiment included
only 12 of the 15 intervals investigated by Levelt e al., the overali C-shaped
nature of the two configurations in two-dimensional space is quite striking,

In analyses of many different sets of data that were known to be basically
one-dimensional, I have found that two-dimensional solutions, when at-
tempted, characteristically can assume either the simple C-shape (illustrated
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in Fig. 2) or the inflected S-shape, and that solutions in higher-dimensional
spaces are even more various, (Note for example that, just as a semicircle
in two dimensions is monotonely equivalent to a straight line in one, a helix
in three dimensions is, in the same sense, monotonely equivalent to both.)
Evidently, by bending away from a one-dimensional straight line, the con-
figuration is able to take advantage of the extra degrees of freedom provided
by additional dimensions to achieve a better fit to the random fluctuations
in the similarity data. In some published applications, moreover, the pos-
sibility of the more desirable one-dimensional result was mistakenly dismissed
because the undetected occurrence of a merely local minimum (which is
egpecially likely in one-dimension) made the one-dimensional solution appear
to yield an unacceptibly poor monotone fit and/or substantive interpretation.

Prospects

With the exception of my own original method, all methods of nonmetric
multidimensional sealing require the user to specify, in advance, the number
of dimensions of the space in which the solution is to be sought. When in
doubt, the user must obtain sclutions, separately, in spaces of different
numbers of dimensions (perhaps 3, 2, and 1) and then use criteria such as
goodness of fit, statistical stability, and substantive interpretability to
choose among the resulting solutions [Shepard, 1972a, pp. 9-10]. In order
to take maximum advantage of this approach and to avoid the specific
pitfalls mentioned above, I believe it to be highly desirable (a) to recognize
the importance of the criteria of stability and interpretability (including
the special advantages of visually accessible two-dimensional representations
and the embedded clusterings to which they particularly lend themselves),
{b) to strive toward more careful Monte Carlo studies and, hopefully, more
illuminating mathematical analyses, and (c) to be vigilant for eonfigurations
{especially C-shaped or S-shaped ones in two dimensions) which strongly
indicate the attainability of an acceptable one-dimensional solution.

The possibility of a one-dimensional solution can also be determined
by an examination of the matrix of simiiarity data itself. If and only if
the underlying structure is truly one-dimensional, a permutation of the
rows and columns of the matrix can be found such that, except for random
fluctuations, the entries decrease monotonically with distance from the
principal diagonal {as in the generalized ‘simplex” of Guttman [1955)).
Fig. 3 displays such a premuted version of the matrix of data reported by
Levelt, ef al. [1966] and upon which the spatial representation in Fig. 24
was based. To assist visualization, the heaviness of the cell entries has been
chosen, here, in accordance with their numerical magnitudes. Notice that,
except for minor fluctuations in seemingly isolated cells, these cell entries do
tend to shade off quite uniformly as we move from the diagonal to the lower
left corner. This is in contrast to the matrix of similarities among spectral
colors reported by Ekman [1954], in which the similarities systematically
increased again toward the lower left corner and in which monotonicity
couid only be maintained by a two-dimensional configuration in which the
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two ends of the C-shape (corresponding to red and violet) necessarily ap-
proached each other to form the familiar ‘‘color circle,” (See Shepard [1962b]
and the present Fig. 7D.)
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Figure 2
Two-dimensional spatial representations of musical intervals, obtained by Levelt,
Van de Geer, and Plomp [1966] (A) and by Wickens {(B), on the basis of independent sets
of judged similarities.

All of the preceding recommendations are with respect to the (almost
universally adopted) approach of obtaining solutions in spaces of specified
dimensicnalities and then using various external criteria to choose among
the resulting configurations. An entirely different approach, attempted in
my original method [Shepard, 1962a], is to use constraints internal to the
data themselves to determine the proper number of dimensions objectively.
I still believe that such an approach is feasible, particularly in cases of
relatively noise-free data, and that it avoids a number of problems, par-
ticularly the just-considered problems of inherently low-dimensional con-
figurations appearing as curved structures in higher-dimensional spaces
and of entrapment in merely local minima.

The first compelling demonstration of the possibility of determining
the true number of underlying dimensions objectively was that illustrated
in Fig. 2 of my original report [Shepard, 1962b, p. 223]. That figure showed
that, by means of the above-mentioned device of stretching large distances
relative to small, an initially regular simplex in 14 ‘dimensions flattened
down into a stationary configuration of 15 points that was virtually two-
dimensional and essentially identical to the true underlying structure from
which the input data were monotonieally derived. And, again, this process
of dimensional compression was sufficiently effective that the true number
of underlying dimensions could be estimated after only three iterations.

Even more striking demonstrations of the potential power of this ap-
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Rearranged version of the matrix of similarities among musical intervals obtained by
Levelt et al. [1966].

preach have arisen from subsequent attempts to extend the approach to
permit the determination of the “intrinsic dimensionality” of curved
structures in general [Bennett, 1969; Shepard & Carroll, 1966]. Fig. 4 pre-
gents the results of two tests of a method of this type, for “conformal re-
duction of nonlinear data structure,” that I developed at the Bell Laboratories
with the collaboration of Jih-Jie Chang. The method uses essentially the
same sort of differential stretching of distances as my original 1962 method
but differs from that method in that the requirement of monotonicity between
the criginal data and the final distances is enforeed only locally rather than
globally. The method is quite similar to that developed by Bennett [1965,
1969] except for the definition of the local neighborhood around each point.
In our method each neighborhood is defined (a) with respect to distances
between points in the (evolving} configuration rather than with respect to
the (fixed) set of data, and (b) according to an exponential-decay weighting
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function of these distances rather than according to an arbitrary discontinuous
cutoff,

As can be seen from the nine successive stages of the iterative process
shown in Fig. 4A, the abandonment of global monotonicity permitted a
configuration of 19 points in the form of a circle with a gap (similar to the
configurations in Figs. 2 and 7D and to Guttman’s [1954] “circumplex’)
to open out into a straight line. The iterative process achieved stationarity
with this perfectly one-dimensional configuration; there were no further
changes with continued iteration. A similar evolution is shown in Fig. 4B
for an intrinsically two-dimensional configuration of 49 points on a sphere.
As can be seen from the portrayed two-dimensional projections, the initially
spherical configuration (1), flattened out into shapes successively resembling
a deep bowl (2), a parabolic microwave antenna (3), a shallow platter (4), and
a perfectly flat disk (5). The striking degree of flatness of this final, stationary
configuration is exhibited more clearly in view 5a, which shows the final
configuration (of step 5) rotated into an edge-on orientation.

The maintenance of monotonicity, locally, ensured that the flattening
in both cases, despite the global distortion, preserved local structure and
hence was essentially “conformal.” This is attested to by the evenness of
the spacing of the points in the final configuration (9) that evolved from the
19 points on the circle, and by the systematically expanding regularity of
the final configuration (5) that evolved from the 49 points on the sphere.
This last regularity is most evident in view 5b, which shows the same con-
figuration (of views 5 and 5a) rotated into a flat-on orientation. (The views
in this fizure are reproduced from the Shepard-Chang computer-generated
movie “Ilustrations of Conformal Mapping” which was first shown during
an invited address before the 1966 meeting of the American Psychological
Assoclation [Shepard, 1966a].)

In the two examples presented in Fig. 4, the data were error free and
the usual requirement of global monotonicity was relaxed. Nevertheless,
the success of this objective method for dimensional reduction, together
with the success of my original method from which this method derives
(and in which global monctonicity was required with real and therefore
fallible data) encourages me to believe that true underlying dimensionality
is in prineiple determinabie by automatic, objective methods.

4. Avoiding Loss or Imposition of Structure

Problem

Ironically, although we always seek to minimize the chosen measure of
departure from monotonicity, speeial difficulties are apt to arise whenever
the stress is zero or close to zero. Zero-stress solutions, in partieular, are
generally either nonunigue—and to that extent introduce some degree of
extraneous structure that is not contained in the data, or degenerate—and
therefore fail to preserve some structure that 7s contained in the data. The
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problem of nonuniqueness is the less troublesome. One can always evaluate
the degree of uniqueness of a solution by using several different starting
configurations. -Moreover, what the finding that substantially different
solutions are obtainable with the same zero stress really indicates is that
either the number of objects being scaled should be increased or the number
of dimensions of the embedding space should be decreased. The problem of
degeneracy, however, is sometimes bothersome enough to motivate a search
for methodological innovations.
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_priate intrinsic dimengionalities.



Representation of structure in similarity data 15

As a rough index of the nondegeneracy of a solution, I would propose
the ratio of the number of distinct values of distances among the n points
to the total number of distances (viz., n(n — 1)/2}. Thus, if no two distances
are tied we have a totally nondegenerate solution, while if all n(n — 1}/2
distances are tied we have a totally degenerate solution (namely, the regular
gimplex in # — 1 dimengions). Typieally, because we require a solution in
fewer than » — 1 dimensions, a zero-stress solution is not totally degenerate
by this index, and the distances assume one of two or three different values.

As an illustration, Fig. 5A shows a degenerate solution that occurred
when I analyzed data long ago sent to me by A. Howard, on the judged
similarities among eight gustatory stimuli. The stimuli collapsed into the
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Degenerate (A) and nondegenerate (B) configurations for eight gustatory stimuli,
based upon the “noumetric’’ and “metric’’ assumptions that the relation of the similarity
data to the interpoint distances has the form of a merely monotone function (C) or the
form of a polynomial of low degree (D)), respectively.

three vertices of an equilateral triangle and, so, there were just two values
of distance: zero, for pairs of points located at the same vertex, and a fixed
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larger valuc, for pairs of points located at two different vertices. This de-
generacy arose because the stimuli divided into three groups such that all
of the similarities within any group were greater than any of the similarities
between any two groups. The consequence is that much structural information
is lost in the spatial solution. We learn only that the stimuli strongly cluster
into the three groups; we learn nothing about either the relationships among
these three groups or the relationships among the stimuli within any one
of these groups. Correspondingly, the function relating the given similarities
and the recovered distances assumes the implausible and uninformative
shape of the single, discontinuous step shown in Fig. 5C. Although the fit is
perfect (i.e., the stress is zero), the representation is too degenerate to be
of much use.

In Fig. 6 | display all maximally degenerate four-point configurations in
two dimensions; z.e., all two-dimensional configurations in which the dis-
tances among the four points take on only two distinet values. The smaller
distances are represented by the heavier lines connecting pairs of points—
unless those distances are zero, in which case the two or three coincident
points are represented by concentric circles. (These configurations may be
regarded as two-dimensional analogues of the one-dimensional “corner
sequences” defined by Abelson and Tukey [1959].) Of the many strongly
degenerate two-dimensional configurations that I have obtained in the
analysis of real and artificial data, regardless of the number of points all

1<(22374=528) (1=2)< (3=4=526) {(=253) <[4=5=8) (=2=3=4)< (5=6) (1I=2z3=4=5) <&

FiGurk 6
The nine degenerate four-point configurations in two dimensions, for which the six inter-
point distances take on just two distinet values (as indicated along the bottom).

have taken one or another of the nine forms shown in Fig. 6. In cases of
extreme degeneracy, apparently, the additional points usually collapse onto
these same few vertices. Thus, the eight-point configuration shown in Fig. 5A
correzsponds to the equilateral triangular degeneracy labeled “I" at the
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left in Iig. 6. Therefore, whenever the points in an obtained solution cluster
close to the vertices of one of the highly symmetric configurations exhibited
in Fig. 6, one should suspect the occurrence of a rather marked degeneracy.
In practice, the true extent of this degeneracy is often not immediately obvious
because the criterion (e.g., of low stress) for terminating the iterative process
is attained before the clusters complete their collapse into the vertices. Even
s0, the tendency of the monotonicity diagram (see Fig. 5C) toward a dis-
continuous function of one or two steps will usually suffice as a signal of
impending degeneracy.

Closely related to the problem of true degeneracy, in which a large
proportion of the interpoint distances are tied, is the problem of quasi-
degeneracy, in which many of the monotone values being brought into a
mutual best fit with the distances, if not the distances themselves, are tied,
Actually, some degree of quasidegeneracy in this sense is always present
in solutions obtained by nonmetric methods (although it may be negligible
when the number of points is large and the data are sufficiently error-free
[Shepard, 1966b]). It shows up in the zigzag or step-like shape that is char-
acteristic of the best-fitting monotone functions obtained by nonmetric
muitidimensional scaling (see Fig. 7A). Roughly, the more pronounced
the individual steps appear, the greater is the quasidegeneracy of the solution.

To the extent that we are interested in the functional form of the rela-
tion between the similarity data and metric distances (as in the study of
stimulus generalization), such quasidegeneracy is undesirable for two related
reasons; one substantive and one statistical. Substantively, the step-like
funection is unappealing if, as T assume, we generally believe that the true
underlying relationship has some smooth functional form (such as the ex-
ponential decay form expected under some circumstances on theoretical
grounds [Shepard, 1958a]). Statistically, the zigzag function is unreliable
in the sense that, when we analyze a new set of similarity data for the same
set of objects, we find that the individual zigs and zags of the function shift
about in a quite unpredictable manner. The presumption, therefore, is that
these individual zigs and zags do not represent any reliable or substantively
meaningful phenomenon but, rather, reflect the attempt of the large number
of degrees of freedom of a merely monotone function to fit the random
fluctuations peculiar to each individual set of data.

Prospects

In order to minimize the likelihood of true degeneracy or of marked
quasidegeneracy, researchers should try, whenever possible, to select objects
for nonmetric sealing {a) that are not obviously grouped into a few psy-
chologically compact clusters, and (b} that are not fewer than about ten in
total number, for a two-dimensional selution, or more, for a higher-dimensional
solution [Shepard, 1966b]. (A distressing number of two- and even three-
dimensional sclutions have been published in which, despite the inclusion
of only six to eight objects, no evidence is provided that the configuration
has a reasonable degree of metric determinacy and is not a prematurely
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arrested case of convergence toward a degeneracy.) Whether or not it is
actually included in the published report, the monotonicity diagram (Figs.
5C and TA) should be examined for step-like evidences of degeneracy and
the results reported.

When true degeneracy does oceur (as illustrated in Figs. 5A and 6}, one
carrently has recourse to one or both of two further kinds of analysis in
order to achieve a representation that preserves more of the structure in
the similarity data. Onc can reapply the nonmetric analysis, separately,
o the submatrix of similarities for the objects corresponding to each collapsed
cluster containing enough points to make this worthwhile. If this does not
lead to a further (hierarchically decper) degeneracy, additional information
can thereby be recovered about the internal structure of such a subset—
though not about the relation of that subset to any other. Alternatively,
if a representation of the overall structure of the entire set of objects is still
desired, one must resort to metric methods, which depend upon stronger
assumptions concerning the functional form of the monotone relation between
similarity and distance. Sometimes, a combination of both approaches is
quite successful. (See, for example, Fig, 18 and accompanying diseussion in
Shepard, ef al. [in press].)

The present Figs. 5B and 5D illustrate the use of stronger, metric
assumptions to overeome degeneracy. Here, the very same set of data already
analyzed nonmetrically in Figs. 5A and 5C were reanalyzed using a program
for “polynomial fitting in the analysis of proximities” that I developed in
an early attempt to deal with the problem of degeneracy [Shepard, 1964b).
(Suhsequently, of course, Kruskal and others have generalized their programs
to provide for the fitting of polynomial or other parametric functions, also.)
Notice that, although the fit is no longer perfect (as it should not be with
fallible data), the spatial configuration preserves structural information
about all eight of the stimuli (Fig. 5B), and (apart from a minor deviation
from monotonicity, to be considered shortly) the relation between similarity
and distance approximates a more plausible, smooth functional form—
specifically, in this case, a quadratie (Fig. 5D}).

The fitting of smooth, parametric functions rather than jagged, merely
monotonic functions also permits us to circumvent the lesser problem of
quasidegeneracy. This is illustrated in Fig. 7. The upper two panels (4
and B) are hoth bhased upon measures of the tendency of pigeons trained
to respond to each of a number of spectral colors to generalize that response
to each of the other colors. These data, collected by Guttman and Kalish
[1956], are of the sort for which the question of the functional form of the
“gradient of stimulus generalization” is of central interest [Shepard, 1965).
From this standpoint, the function obtained by applying my polynomial-
fitting program—in this case an exponential-like quartic eurve (Fig. 7B)
seems to be both substantively more plausible and statistically more reliable
than the function obtained by nonmetric multidimensional scaling (Fig. 7A).

The lower panels (€’ and D) present a reanalysis of Ekman’s [1954] data
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Figure 7
Measures of stimulus generalization between spectral colors, obtained for pigeons by
Guttman and Kalish [1956], plotted against interpoint distances obtained by multidimen-
sional scaling on the assumption of a ‘merely monotone (A) or a polynomial (B) relation
between similarity and distance; and a plot for a similar polynomial analysis of Ekman’s
[1954] judged similarities among 14 spectral colors (C) together with the quasicircular
spatial configuration obtained by that analysis (D).

on the similarities among spectral colors as judged by human subjects. The
quasicircular configuration obtained for the 14 colors by means of the poly-
nomial-fitting program (Fig. 7D) is virtually identical to the nondegenerate
one I originally obtained by s nonmetric analysis [Shepard, 1962b, p. 236].
Moreover, the obtained relationship between judged similarity and Euclidean
distance between points in this configuration (Fig. 7C) exhibits a strikingly
good fit to a smooth and plausible monotone decreasing function. Evidently,
such a metric method of analysis can yield quite satisfactory results whether
or not there is a problem of degeneracy or of quasidegeneracy.

One drawback of polynomial-fitting programs, of course, is that it is
difficult to ensure that the resulting polynomial will be monotone over the
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range covered. Thus, a departure from monotonicity is evident in Fig. 5D
and, although not included in the figure, a nonmonotonic upswing occurs
just bevond the right-hand border of Fig. 7B. Kruskal (personal communica-
tion) has suggested the strategy of simultancously minimizing departures
from monotonicity and from a polynomial of specified degree (a possibility
that is provided in recent versions of his program, e.g., M-D-SCAL 5M).
But, cven with this strategy, I have found that the fitted polynomial ean
still become markedly nonmonotone in the range of the data.

In order to ensure monotonicity, one can of course iterate into a best
fit with a parametrie function of some other general type that can be more
easily constrained to strict monotonicity. Since eonfusion and generalizailon
data seem in general to decay exponentially with interstimulus distance
[Shepard, 1958, a, b, 1965, 1972¢], Jih-Jie Chang and I developed a gradient,
method for optimally adjusting, simultaneously, the coordinates of a spatial
configuration and the parameters of an exponential deeay function relating
the similarity data to the interpoint distances [Chang & Bhepard, 1966].
In Fig. 8 the results of applying this exponential-fitting method to Miller
and Nicely's [1955] data on confusions among 16 consonants (4) is contrasted
with the results of 2 nonmetric (M-D-SCAT) analysis of the same data (B),
The eclosed curves show the embedded results of hierarchical clustering
[Johnson, 1967] applied to the same data, as previously explained for Fig. 1.
(See Shepard [1972¢] for the full substantive interpretation of this configura-
tion.)

Note that, in the configuration (B) obtained by the nonmetric analysis,
only, there is an inconvenient partial degeneracy in which several points
collapse together. Correspondingly, the fitted monotone function obtained
by the nonmetric analysis manifested, again, a crude step-like shape (similar
to that shown in [ig. 7A), whereas the fitted exponential function obtained
by the metric analysis achicved an cxeellent fit (even better than that shown
in Fig. 7B) and, in fact, accounted for some 999 of the variance of the
confusion measures of similarity [Shepard, 1972¢, p. 77]. Nevertheless, the
exponential-fitting method is undesirably Iimited for general purposes,
gince many other types of similarity or dissimilarity data are not expected
to bear an exponential relation to distance.

What may have seemed most remarkable in my orlgmai demonstrations
of nonmetric scaling [Shepard, 1962b] was the extent to which a tightly
constrained metric structure can be recovered from an analysis of merely
ordinal relations in the data [cf., Shepard, 1966; Young, 1970]. It may seem
odd, therefore, that I am now recommending consideration of methods that
depend upon more than merely ordinal relations. Nevertheless, from the
praetical standpoint of trying to obtain results that are optimally meaningful
and invariant under replication of the data as well as under reasonable (and
therefore smooth) sorts of monotone transformations of the data, such a
recommendation scems appropriate. The problem that remains, however,
is to impose the desired condition of smoothness in some general and non-
arbitrary way without having to specify a partieular functional form—such
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Ficure 8
Two-dimensional spatial representations of 16 consonant phonemes obtained by
multidimensional scaling on the assumptions that the relation of the confusion measures
of similarity (obtained by Miller and Nicely [1955}) to the interpoint distances is exponen-
tial (A) or merely monotone (B), together with embedded hierarchical clusterings
[see Shepard, 1972¢].

as the polynomial (which can become nonmonotonic) or the exponential
(which is often too restrictive).

Reeently, with the collaboration of a student in computer science,
Gilen Crawford, I have been exploring a new approach to the problem of
fitting functions which seems to provide a very natural and well-defined
way of introducing general conditions such as convexity, conecavity, or
even ‘‘smoothness,”” as well as the condition of monotonicity. For each
value r; of an independent variable z (where the subscripts are assigned

go that r, < x, < --+ < 7,), we seek a theoretical estimate §; that best
fits the corresponding observed value y,; such that the theoretical values
# 5, P2, -, U satisfy certain explicitly preseribed constraints on their

weighted first- and seecond-order differences as required to ensure that the
sequence of values is monotone, is convex or concave, and/or is locally
linear, as desired. The method that we are currently testing (which we call
“least-squares regression to a constrained-difference function’) uses a gradient
method with penalty functions to obtain a least-squares solution subject
to the prescribed constraints.

The results of one test application of this method are displayed in
Fig. 9. In Fig. 9A the best-fitting monotone decreasing function is indicated
for a set of artificial data (a quadratic with added random error). The given
data are represented by the open circles and the fitted function is represented
by the connected small solid circles. Note, as before, the characteristically
step-like shape of the best-fitting monotone function. By contrast, Fig. 9B
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shows that, as soon as we use the method to impose just the condition of
convexity in addition to the condition of monotonicity, the function fitted
to the same data becomes very smooth. Moreover, the convex function also
achieves a much closer fit to the true underlying {(quadratic) function.

We plan to use this approach to curve fitting as the basis for a method
of multidimensional scaling in which one will not have to assume a particular
functional form for the relation between distance and similarity, but in which
one can impose some further constraint beyond mere monotonicity (in order
to obtain a functional relationship that is more plausible, more reliable,
and less subject to degeneracy). In the most direct extension to multidimen-
sional scaling, the fixed similarity values, s,; , would be treated as the values
of the independent variable z, while the to-be-varied distances, d,; , would
be treated as the values of the dependent variable y. However, other pos-
sibilities, e.g., turning the regression around, would also offer advantages,
including that of being able to maximize the variance of the given similarity
data accounted for by the spatial representation.

5. Determining the Form of the Underlying Melric

Problem

In addition to permitting the recovery of metric structure from merely
ordinal data, the iterative procedures introduced in the original methods
of nonmetric multidimensional scaling made possible the fitting of repre-
sentations based upon non-Euclidean metrics. (See [Shepard, 1962b, p. 224]
and, for the first actual implementation of this possibility, [Kruskal, 1964a, bl.)
Methods of this type are therefore used in the continuing investigation into
the conditions under which psychological similarity is determined by alterna-
tive Euclidean or non-Fuclidean rules of combination of differences along
underlying psychological dimensions [see, e.g., Arnold, 1971; Attneave, 1950;
Cross, 1965; Hyman & Well, 1967, 1968; Shepard, 1964a; Shepard & Cermak,
1973; Thomas, 1968; Torgerson, 1958]. Unfortunately, difficulties both of a
persistent practical sort and of a recently discovered theoretical nature
raise doubts about the ways in which these methods are usually used for
this purpose.

Methods of nonmetric multidimensional scaling generaily seek Minkowski
power-metric representations by iterating to a best fit after specifying a
value for the power, r (where the most widely discussed metrics—the so-called
“eity-block,” “‘dominance” and, of course, Euclidean varieties—correspond
to the limiting values of r = 1, r = @, and the intermediate value of r = 2,
respectively). Thus, if the appropriate value of 7 is (as in the typical case)
not known in advance, the user is faced with the tedious and costly procedure
of obtaining solutions, separately, for a number of representative values of
r spaced out between 1 and some very large value. The user must then
decide among the resulting set of solutions in some way (presumably on the
basis of which solution achieves the lowest residual stress [e.g., Kruskal
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Ldentical artificially generated scaiterplots with the best-fitting monctone decreasing
function {A), and with the best-fitting monotone decreasing and convex function obtained
by the Shepard-Crawford method of regression to a constrained difference function (B).

19644, p. 24]).
From the practical standpoint, the cost of obtaining solutions separately
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for many different values of r is apt to become prohibitive because problems
of slow convergence and local minima are much more severe in the case
of these non-Euclidean metries. On the basis of his extensive attempts to
obtain non-Euclidean solutions, Arabie {personal communication [see, also,
Arabie & Boorman, 1973]) reports that, in three or more dimensions, random
starting configurations are essentially useless. For this case, he recommends
resorting to the incompletely validated strategy-—apparently suggested,
independently, by Arnold (1971} and Kruskal (personal communication)—of
gradually working out from the Euclidean solution (for r = 2), by using
the final configuration obtained for each value of r as the initial configuration
for the next larger (or smaller) value of r. In the case of two dimensions,
by contrast, Arabie reports that this (Arnold-Kruskal) strategy is generally
unsuccessful and that one should therefore use random initial configurations
(with perhaps as many as 100 different starts being required for each value
of r in order to ensure attainment of the global minimum!).

Quite apart from this essentially practical problem, my own recent
theoretical investigations have convinced me that the generally accepted
practice of taking, as the correct metric, the one which yields the lowest
residual departure from monotonicity is unfounded and probably leads to
erroneous conclusions. Such a practice is based on the assumption, never
explicitly justified, that values of stress are directly comparable across
different values of r. I first came to guestion this assumption as a result of
puzzling over the tendency (first noted by Arnold [1971] and, then, by Arabie
and Boorman [1973]) of the points in spatial configurations conforming to
the city-block or the dominance metrie to be themselves disposed in a manner
resembling the shape of the ‘‘unit sphere” for those particular metrics;
that is, resembling the perimeter of a diamond or square, respectively, (in
two dimensions) or the surface of an octahedron or cube, respectively, (in
three). This led to the discovery of the purely geometrical fact that degen-
eracies and, hence, low values of stress are more prevalent for values of r
close to 1 and, particularly so, for values of r approaching .

The special nature of these extreme metrics (and a possible explanation
for the puzzling phenomenon noted by Arnold and by Arabie and Boorman)
is illustrated in Fig. 10, for the case of the city-block metric in two dimensions.
In this case, the unit circle (i.e., the set of all points equidistant from a
given point) has the form of a diamond (or 45° square), as indicated by any
one of the concentric dashed contours surrounding the point P. This implies
that, for every point P, situated on a closed curve of the particular shape
indicated by the solid curve, half of the remaining points on that same curve
can be divided into three subsets (indicated by the heavier segments, a, b,
and ¢) such that the distances from P to all points within any one of these
subsets are tied. It follows that, if points (in finite number) are evenly dis-
tributed around the solid curve, no more than half of the interpoint distances
will be distinct. According to the index of nondegeneracy proposed earlier,
then, this situation is at least “hali degenerate.” But, as was illustrated
in Fig. 5, whenever there is a choice between a more and a less degenerate
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Fraune 10
Demonstration of the prevalence of tied distances between points on an equidistance
contour in the city-block metric,

configuration, the nonmetric method will move toward the more degenerate
configuration, where the increased prevalence of ties permits the attainment
of a lower value of stress.

When the point P coincides with any of the four corners of the solid
curve, the three segments a, b, and ¢ merge into one continuous region,
which is coextensive with the two sides opposite P and within which all
distances from P have the same value. Hence, a configuration of four points
corresponding to these four corners has the completely degenerate property
that all six interpoint distances have exactly the same value. This is in
contrast to the Euclidean case, in which no more than three points {the
vertices of an equilateral triangle) can be mutually equidistant, and in
which a complete four-point degeneracy (the vertices of a regular tetrahedron)
requires three dimensions.

In the ecase of higher-dimensional spaces, the contrast with the Euclidean
metric becomes even more marked. Specifically, the maximum number of
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points, m, that can be arranged in k& dimensions, so that the points in all
m{m — 1)/2 pairs are separated by the same distance is given by & + 1,_by
2k, and by 2" in the cases of the Euclidean, city-block, and dominance metrics,
respectively (where the points then coincide with the vertices of the regular
simplex, the regular cross-polytope, and the hypercube, respective!y). T h'us,
the number of points that can be mutually equidistant tends, with increasing
dimensionality, to be twice as great for the city-block metric as for the
Euclidean and to increase exponentially faster than either for the dominance
metrie. Even in just three dimensions, the number of points for which complet.e
degeneracy is possible is 4, 6, and 8, for the Euclidean, city-block, and domi-
nance metrics. Thus, while it is not true in the Euclidean case, with a domi-
nance metric we know in advance that in only three dimensions we can _fit
any similarity data for eight objects whatever, and that the resulting spatial
configuration will preserve none of the structural iuformation in those data.
The same phenomenon emerges in partial as well as complete degeneltacy.
Thus, for 16 points at the vertices of a regular 3 X 3 lattice in two dimensions,
the number of distinet values of interpoint distance is 9, 6, and only 3 for
the Euclidean, city-block, and dominance metrics. Likewise, for 27 points
at the vertices of a regular 2 X 2 X 2 lattice in three dimensions, the number
of distinet values of distance is 9, 6, and only 2 for the same three metrics.
And, for 16 points at the vertices of a regular 1 X 1 X 1 X 1 lattice {(or
hypercube) in four dimensions, the number of distinct values of distance is
4, 4, and only 1. Quite generally, then, tied distances, degeneracies and,
hence, lower levels of stress are easier to come by with non-Euclidean and,
particularly, with the dominance metric. Consequently, while the finding
that the lowest stress is attainable for » = 2 may be evidence that the under-
lying metric is Euclidean, the finding that a lower stress is attainable for a
value of r that is much smaller or larger may be artifactual.
These same investigations disclosed some other curious properties of
these non-Euclidean metrics. One is that the completely degenerate con-
figuration for the city-block and dominance metrics (unlike the regular
simplex for the Euclidean) give the misleading appearance of containing
~ structural information. Thus, in the cubical degeneracy for the three-dimen-

sional dominance metric, points separated by one edge of the cube appear to
.. be related to each other in a way that points separated by two edges (or a
face diagonal) or by three edges (or a body diagonal) do not. But, in fact,
all pairs of points are related in the same way, and the interpoint distances
are unchanged by any permutation of the assignment of points to vertices.
Another fact of perhaps greater practical relevance is that, in the cases of
the two-, three-, and four-dimensional lattices considered above, the rank
order of the interpoint distances for the Euclidean metric (though divided
into more levels) is entirely consistent with the rank order for the dominance
metric (and differs, at most, by a reversal of one pair of adjacent values
from that for the city-block metric). Thus, although it might seem quite
natural to generate a set of stimuli by using every combination of values
from among two, three, or four levels on each of four, three, or two physical
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dimensions, respectively, nonmetric methods of analysis would be totally
incapable of determining whether similarity data collected for such a set
conformed with the Euclidean or dominance metries (and would be extremely
inefficient, at best, in revealing a better or worse correspondence to the
city-block metric).

Finally, the limitations of the currently accepted practice of using
nonmetric multidimensional scaling to test the appropriateness of the various
Minkowski power metries do not end with these practical and theoretical
difficulties. There is the further limitation that this one-parameter class of
so-called r-metries is itself quite restricted. How much so may be seen from
g, 11, which presents a hicrarchy of some of the most thoroughly studied
metric spaces, ranging from the most general, represented at the top, down
to the most specific; represented at the bottom. Note that the class of
Minkowski r-metric spaces oceupies a relatively low position in this hierarchy.
This is because the distance formula (displayed in the rectangle for that
class of spaces) is extremely restrictive and, in fact, entails that the unit
sphere in k dimensions has exactly 2k prominences for » < 2 and exactly 2*
prominences for r > 2.

Much more general, is the class of general Minkowski spaces in which
the unit spheres may have any convex, centrally symmetric shape. The
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Hierarehy of some commonly considered metric and semimetric spaces.
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conditions of symmetry and convexity of the unit spheres are connected
with the distance axioms of symmetry and the triangle inequality, displayed
in the top-most and next lower rectangles, respectively. An additional re-
quirement, that these unit spheres be constant in size and shape throughout
the space, entails that the general Minkowski space is isotropic and intrinsi-
cally flat. In this last respect, general Minkowski is, in turn, less general
than Finsler.space, in which these unit spheres can change continuously
with location in the space. Thus, Finsler space permits both the locally
non-Euclidean properties of fat Minkowski spaces and the globally non-
Euclidean properties of intrinsically curved Riemann spaces (indicated on
the left in Fig. 11}. Finally, even Finsler space (along with all the more
special cases arrayed below it) presupposes a continuous underlying co-
ordinate space with its own intrinsic dimensionality and, so, is less general
than the merely metric or semi-metric spaces. For, the constraints in these
most general cases are defined solely in terms of interpoint distances and
entail neither a specific dimensionality nor the embedability of a coordinate
system. (For a fuller mathematical treatment of these various types of
spaces see, e.g., Beals, Krantz, and Tversky [1968]; Blumenthal [1959);
Busemann [1955]; and Rund [1959].)

Generally available methods for the analysis of similarity data have
been designed to yield representations with metrics corresponding to only
five of the thirteen boxes included in Fig. 11; namely, that of the ultra-
metric (as exemplified by Johnson'’s [1967] formulation of hierarchical
clustering) and those of the Minkowski r-metric and, hence, the Euclidean,
city-block, and dominance metries (as already discussed). Tt is true (a) that
general Riemann spaces and spaces of constant curvature have long been
considered for representing, respectively, the perceived similarities among
colors [e.g., Silberstein, 1938; Silberstein & MacAdam, 1945] and the perceived
distances among luminous points in a dark three-dimensional field [e.g.,
Blank, 1958; 1959; Indow, in press; Luneburg, 1947, 1950); (b) that general
Minkowski spaces have been recognized as providing for the representation
of considerably more diverse rules of combination than are representable
just by the class of r-metrics [Shepard, 1964a); and (c) that completely
general metric spaces avoid the implication, possibly objectionable for the
representation of semantic structure, of an underlying continuum. However,

methods of multidimensional scaling have, up to now, not been fully extended
Lo these cases,

Prospects

The strategy of obtaining Minkowski r-metric solutions for the same
set of data using different values of r may still be useful in some cases. It
apparently can provide evidence that the underlying metrie is Euclidean
or near-Euclidean. For those who wish to use this strategy, some savings
in computation is possible owing to a kind of conjugate relationship that
holds in certain cases between values of » above and below the Euclidean
value of 2, Certainly in two dimensions there is no reason to seek optimum
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solutions both for # = 1 and for r = «. These two limiting metrics are
identical in two-dimensions, except for a 45° rotation and uniform dilation
or contraction of the configuration as a whole. Moreover, for intermediate

values of v, Koopman and Cooper [1974] have just reported numerical results
suggesting that, if r and r* stand in the relation 1/r + 1/+* = 1, an approxi-

mate conjugiacy holds in two dimensions such that, for practical purposes,
it may he unnecessary to obtain two-dimensional solutions for values of r
both above and below 2. Additional support for this suggestion may be

found in a result that Phipps Arabie (personal communication) has obtained
in further analyses of Ekman’s [1954] color data. Corresponding to the
r-value of about 2.5 (or 5/2) for which Kruskal {1964a, p. 24] had found that
gtress was minimum for these data, Arabie found a corresponding, con-
jugate minimum stress at an r-value of about 5/3 (in accordance with
2/5 4+ 3/5 = 1). '

However, even in two dimensions, this conjugacy does not hold strictly
except in the limiting case of r = 1 and r* = «. Aithough the proof is too
long to include here, I established some years ago that, for any value of
in the open interval between 1 and 2, there is no value, r*, greater than 2
such that the r-metric and the r*-metric are exactly equivalent except for
a rotation and change of seale. And, from the already mentioned fact that
the number of points that can be arranged to be mutually equidistant in
k-dimensions is 2k for the city-block metric but 2* for the dominance metric,
it 1s clear that conjugacy for & > 2 does not even hold in the limiting cases
in which 7 and #* approach 1 and .

In any case, the very serious limitations already noted in the use of
Minkowski r-metric solutions to investigate the underlying rule of combination
has led me to explore quite different approaches. One which appears to
avoid the practical and theoretical difficulties discussed above and to offer
considerable generality (at least for the two-dimensional case), is based
upon results that I obtained with the collaborative help of Doug Carroll
and Jih-Jie Chang [Shepard, 1966]. Basically, these results amount to a
demonstration that purely Euclidean solutions can be surprigsingly robust
in the face of certain kinds of rather marked departures from the assumed
Euelidean metric. As I shall argue, this means that one can determine the
form of the underlying unit circle and, hence, the nature of an underlying
(flat and isotropic) space even though the metrie is of the general Minkowski
type or of still more general merely semimetric types,

Our investigation was based upon a set of artificial data derived from
a square array of 50 random points. The Euclidean distances among these
points were converted into very non-Euclidean and, in fact, merely semimetric
“distances” by differentially stretching or shrinking all distances depending
upon the angular orientation of the line comnecting each pair of points in
accordance with the six-lobed unit circle shown in Fig, 12A. The resulting
“metric’” was essentially in the spirit of the general Minkowski metric.
But, since the unit circle was nonconvex and had six rather than four prom-
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inences the metric could not be approximated by any two-dimensional
r-metric and was strictly speaking only a semimetric.

Nevertheless, when nonmetric multidimensional scaling (M-D-SCAL)
was applied to these rather bizarre semimetric distances on the assumption
that they were ordinary BEuclidean distances, the obtained two-dimensional
configuration achieved a close approximation to congruence with the randomly
generated original configuration. For most of the individual points, the
discrepancy in the recovered position of the point was small compared with
the distance to even its nearest neighbor. When we then plotted, in polar
coordinates, the ratio of the original (non-Euclidean) data to the recovered
(Euclidean) distances as a function of the angle of the line between the two
points in every pair, we obtained the scatterplot displayed in Fig. 12B.
The six-lobed shape of the underlying unit circle reemerged quite clearly.

In the analysis of real data, of course, the similarity measures may
be some unknown monotone function of the underlying (non-Euclidean)
distances rather than those distances themselves. So, in general, it would
not be appropriate merely to plot ratios as was done for Fig. 12B. Neverthe-
less, it should not be difficult to estimate, for each small angular interval,
the (Euclidean) distance for which the function relating similarity to distance
within that interval attains some specified level. 1 have outlined a procedure
of this sort that, I am hopeful, will yield a good approximation to the desired
unit ¢irele. Depending upon whether the resulting plot is generally circular,
square, or of some other (possibly even nonconvex) form, we could infer
quite directly whether the metric is of the Euclidean, city-block (or
dominance}, or some other (perhaps merely semimetric) type.

The extension of existing methods of multidimensional scaling so as to
vield solutions in spaces of constant curvature appears straightforward but,
to my knowledge, has not been attempted. Perhaps the method that comes
closest to being such an extension is the “nonmetric factor analysis” method,

A

Figure 12
Six-lobed unit circle (A} and attempted reconstruction of that semimetric unit circle
(B) on the basis of a Euclidean multidimensional scaling solution.
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8SA-III, of Guttman and Lingoes [see Lingoes, 1972]. In this method scalar
products of vectors, rather than distances, are brought into a best monotone
fit with the similarity data. If the vectors were all constrained to be of the
same length, the scalar products would become equivalent to distances on
the surface of a hypersphere—a surface of constant positive curvature.
Particularly since more recent findings regarding the binocular perception
of luminous points in space have been in some ways inconsistent with Lune-
burg’s [1947] model of visual space as a (hyperbolic) manifold of constant
negative curvature [Foley, 1972], however, there has been no insistent
demand for methods designed to yield representations in which the curvature
is eonstrained to be constant, whether positive or negative.

Doug Carroll and I have pursued a quite different approach that appears
to offer the appreciably greater generality of allowing for cases in which
the intrinsic curvature of the underlying space may vary from region to
region (a8 in general Riemann spaces) and, at the same time, the metric
may behave locally as a general Minkowski metric or even as a still more
general semimetric (such as that associated with the nonconvex unit circle
illustrated above). Such an approach provides for the possibility that the
underlying psychological space may be a kind of Finsler space or even some
semimetric generalization of such a continuous space. This generality is
achieved by abandoning the requirement that the triangle inequality be
satisfied while retaining the requirement that the similarity between the
objects represented by two points vary in an appropriately smooth and
continuous manner with the positions of those points in the underlying
space. The analysis itself is carried out by applying, to the given similarity
data, a method of “parametric mapping” to optimize an index, developed
by Carroll, for measuring departure from a smooth or “continucus” relation
between the data and the coordinates for the points in the underlying pa-
rameter space [Shepard & Carroll, 1966].

As one test of this approach, again carried cut with the collaborative
agsistance of Doug Carroll and Jih-Jie Chang [Shepard, 1968], the already-
described square configuration of 50 random points was converted into a
toroidal configuration by identifying opposite edges of the square and re-
defining distances so as to be non-Euclidean in two respects; local and global.
The locally non-Euelidean structure was induced by stretching and shrinking
each distance as a function of its angle in accordance with the six-lobed
unit cirele in Fig. 12A; and the globally non-Euclidean structure was secured
by taking, as the distance between any two points, the shortest such distance
within the surface of the torus (and so, where such a path is shorter, across
what were previously bounding edges of the square). Finaily, these doubly
non-Euclidean distances were converted into artificial similarity measures
by means of an exponential decay transformation.

Despite the intrinsic two-dimensionality of the underlying space, the
best-fitting two-dimensional solution obtained by standard nonmetric multi-
dimensional scaling (M-D-SCAL) failed (a) to achieve a good fit to the
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data, (b) to achieve an accurate representation of any (either opened out
or projected down) version of the toroidal configuration, and (c) to permit
a recognizable reconstruction of the six-lobed unit circle. It was only by
going to a four-dimensional space, within which the torus itself ecan be iso-
metrically embedded, that a satisfactory fit was achieved. But, because the
four-dimensional solution did not achieve a reduction to the correct intrinsic
dimensionality of the toroidal surface itsell, it was still not possible to re-
construet the unit cirele and, hence,-to infer the locally non-Euclidean form
of the underlying metric.

The best-fitting two-dimensional solution obtained by the method of
parametric mapping did, after some difficulties with apparently merely
local minima, achieve what corresponded to an opened-out version of the
toroidal surface (akin to those presented in Shepard and Carroll, [1966]
and in Shepard and Cermak [1973]). Morcover, the construction of a scatter-
plot in the manner deseribed for Fig. 12B again revealed the six-lobed form
of the unit circle. Although in our experience the method of parametric
mapping, even more than standard methods of nonmetric multidimensional
scaling, is thus beset with problems of slow convergence and local minima,
I believe that some of the suggestions made earlier for the construction of
good initial configurations may substantially increase the effectiveness of
the method. If so, the representation of similarities in terms of quite gencral
sermimetric but continuous coordinate spaces becomes a viable alternative.

In this just-considered generalization, the triangle inequality was
abandoned while the notion of a continuous underlying coordinate space
was retained. The method of “maximum variance nondimensional scaling”
that Jim Cunningham and I have recently been exploring represents a
very different kind of generalization in which the triangle inequality is made
central while the requirement of an underlying coordinate space is relinquished
[Cunningham & Shepard, 1974]. In order to obtain unique nontrivial solutions,
the requirement of minimum dimensionality (which has no meaning in the
absence of a continuous space) was replaced by a requirement of maximum
variance of the distances (which does and which, according to the above-
reported results on reduction of dimensionality, seems to have a very similar
effect).

In test analyses with both real and artificial data, we found that, if
we thus maximize the variance of the distances subject only to (a) the strict
satisfaction of just the metric axioms (particularly the triangle inequality)
and (b} adequate maintenance of monotonicity, we can in faet recover
underlying Euclidean or non-Euclidean distances with considerable accuracy
without any assumption or use of a coordinate embedding space. Since we
are able to recover the underlying distances, we are also able to recover the
form of the unknown function relating the similarity data to the distances.
In fact, in u test with a rather exotically non-Euclidean metric (sum-over-path
distances in a graph-theoretie tree), the sigmoid form of this {artificially
imposed) functional relation was recovered with great precision, while a
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straightiorward application of standard nonmetric multidimensional scaling
to the same artificial data gave a very poor fit and approximation to the
sigmoid function. (Compare Figs. 3 and 4 in Cunningham & Shepard {1974].)

For many practical purposes, two drawbacks of this method may limit
its general usefulness. First, although apparently not subject to local minima,
so far it has tended to converge rather slowly and, so, to be relatively costly—
particularly for large matrices. Second, it does not, of course, yield a spatial
configuration in a two- or three-dimensional coordinate space of the sort
that is usually sought for purposes of substantive interpretation. Neverthe-
less, it is of considerable theoretical interest as a demonstration of the pos-
sibility of recovering very general, merely metric representations—corre-
sponding to the next to the top box in Fig. 11. Moreover, as already suggested,
it should find some uses for the study of the form of the function relating
distances, which are potentially very non-Euclidean, to similarity measures
of various types (such as those of stimulus generalization or reaction time)
and, possibly, for the generation of starting configurations for methods
that are particularly susceptible to local minima. Finally, as I shall suggest
in the next and final section, it may provide one basis for constructing more
discrete, network-like or graph-theorefic representations such as have been
proposed for certain, e.g., semantic, domains,

6. Representing Discrete or Categorical Struclure

Froblem

Standard methods of multidimensional scaling .and, in faet, nearly
all of the methods discussed above have been based upon the assumption
of an underlying space that is continuous and has a well-defined dimension-
ality. (The only exceptions discussed here were the two nondimensional
methods of hierarchical clustering [Johnson, 1967] and maximum variance
scaling [Cunningham & Shepard, in press).) Methods for mapping the data
into a continuous coordinate space seem eminently appropriate for the
investigation of domains of objects in which there is an underlying continuous
physical variation—as there clearly is, for example, with colors which vary
continuously in brightness, hue, and saturation; with tones which vary
continuously in intensity, frequency, and duration; or even with facial
expressions which also vary continuously (even though the physical dimen-
sions of the variation are not yet completely specified). Experience indicates
that, even when the stimuli vary only in discrete steps (as with the dot-and-
dash signals of the Morse Code [Shepard, 1963a]), a representation within
a continuous coordinate spaec is often quite satisfactory—particularly if
the number of stimuli and number of steps of variation are not too small.

Other domains, particularly those of a more conceptual, linguistic, or
semantic nature, appear to be inherently more discrete, categorical, or
bipolar. With regard to the perception of speech, for instance, suggestive
examples are provided by the empirical phenomenon of “categorical percep-
tion” [Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967] and
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by the related theoretical notion of ‘‘distinctive features” [Halle, 1964;
Miller & Nicely, 1955). And with regard to purely internal coneeptual or
semantic systems, inherently discrete structures seem to be the rule rather
than the exception. S8ome especially clear-cut examples include the cognitive
systems of kin terms [Haviland & Clark, 1974; Romney & D’Andrade, 1964],
of linguistic marking [Clark, 1969, 1970; Greenberg, 1966], and of binary,
componential, and algebraic structures in general [e.g., Boyd, 1972; Lévi-
Strauss, 1967]. I myself have several times argued that, although a frozen
spatial configuration may well represent the perceived relations of pair-wise
similarities among stimuli either on the average or else for any one individual
at any one time, such a configuration does not exhaust the cognitive structure
of a set of stimuli. In particular it may not adequately represent the ways
in which different subjects or the same subject at different times may sce
subsets of the stimuli as grouped together or as having some property in
common [Shepard, 1963b, 1964a; Shepard & Cermak, 1973; Shepard, Hovland
& Jenkins, 1961}].

It is of course true that subsets of scaled objects with strong mutual
relations of similarity will tend to show up as visibly clustered groups of
points even in the “continuous” spatial representations obtained by multi-
dimensional scaling. Indeed, in their strongest form, such clusterings may
take one of the more dramatic forms of complete degeneracy illustrated
in Fig. 6. Moreover, objective methods of rotation or of affine transformation
can bring out the discrete or discontinuous aspects of such a configuration
mere fully [Degerman, 1970; Kruskal, 1972; Torgerson, 1965). Still, such
basically continuous spatial representations, even when linearly transformed,
do not {(any more than transformations to simple structure in factor analysis)
vield discrete subsets, as such, explicitly. Among other things, this makes
it difficult to evaluate whether a seeming cluster is valid or reliable—in the
sense that it would be if it repeatedly emerged, explicitly, in the analyses
of independent sets of data.

It is also true that methods of hierarchical clustering {Jardine & Sibson,
1971; Johnson, 1967; Sokal & Sneath, 1963] do yield both explicit and cate-
gorical structures that, moreover, have been found to be quite useful and
reliable in the representation of speech sounds (e.g., see Fig. 8 and Shepard
[1972¢]) and of concepts (e.g., see Fig. 1 and Shepard et al., {in press]}. How-
ever, the requirement that the clusters be hierarchically nested seems un-
desirably restrictive for many purposes. In Fig. 8A it means that, once just
the back fricatives [z] and [3] have been grouped with the unvoiced stops
[d) and [g] (perhaps by virtue of their place of articulation), neither of these
back fricatives can be grouped with either of the front fricatives [v] and [3]
(on the basis solely of their affrication). And in Fig. 1 it means that, once
“cat” is grouped with the other household pet “dog,” it can no longer be
grouped with the other felines “lion” and “tiger.” In shorf, although hierar-
chical systems can represent some of the discrete or categorical strueture
underlying a set of similarity data, it can not represent psychological prop-
erties, however salient, that correspond to overlapping subsets.
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For the same reason, hierarchical systems can not represent parallel
or analogical correspondences between the structures within two nonover-
lapping subsets (such as the parallelism in articulation between the voiced
and unvoiced consonants [Shepard, 1972¢, p. 106]). The representation of
such parallelisms requires the specification of connections (representable
only as overlapping clusterings) between the subparts of disjoint clusters.
And, finally, although a hierarchical clustering is equivalent to a graph-
theoretic tree, arbitrary graph structures (containing closed paths or cycles)
are precluded. So hierarchical representations can not, any more than con-
tinuous spatial representations, furnish the sorts of general graphs or networks
currently being advocated for the representation of semantic structure
[Anderson & Bower, 1973; Quillian, 1968; Rumelhart, Lindsay, & Norman,
1972],

Prospects

One already-noted limitation of maximum wvariance nondimensional
scaling is that, because it drops the restrictive requirement that the distances
be embedded in a coordinate space, it forfeits the pictorially presentable
spatial configuration that has proved to be so useful in substantive applica~
tions of multidimensional scaling. Jim Cunningham and I are currently
exploring a possible addition to this method of nondimensional scaling
that we hope will be able to convert the obtained set of coordinate-free
distances into a graph structure that will meet this need for a more picturable
representation. If we succeed, the sort of general graph structure that is
produced should also be much closer to the kind of discrete, network-like
representations proposed for semantic memory. The distance estimates
furnished by such maximum variance scaling appear ideally suited for the
purposes of constructing a graph-theoretic representation because the maxi-
mization of variance together with the maintenance of the triangle inequality
tends, wherever possible, to render distances additive—as they should be
over a connected path through a graph. (Thus, 2s noted before, artificial
data generated from sum-over-path distances were well fit by maximum
variance nondimensional scaling but not by standard nonmetric multi-
dimensional scaling.) As a first step toward the proposed addition, Cunning-
ham [1974] has already reported encouraging results in the fitting of graphs
of one particular type; namely, tree structures.

A last type of method for the representation of structure in similarity
data to be considered here takes an entirely different approach. Although
it is perhaps closest in spirit to the approach taken by Johnson [1967] in
his formulation of hierarchical clustering, it departs from all methods for
hierarchical clustering in abandoning the very strong restriction that the
clusters never overlap. And, although it shares with both of the nondimen-
sional methods mentioned (viz., those of hierarchical clustering and maximum
variance scaling) the abandonment of an underlying coordinate space, it
goes beyond both of those methods in abandoning, also, the notion of distance,
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As an initial basis for the exploratory development, with Phipps Arabie,
of a method of this type, 1 chose a model according to which the perceived
similarity between-any two objects is a simple sum of the psychological
weights associated with all and only those (discrete) properties that the
two objects both share. Formally,

m
8¢y = Z WPirPia
k=1

1 if object 7 has property k

where P = {0 otherwise,

and where w, is a non-negative weight representing the psychological
salience of property k.

The computational problem with whiech we are faced is that of finding
a minimum set of m subsets of the objects and associated optimum weights
such that the maximum possible variance of the similarities, s,; , is accounted
for. Although the model is closely related to the standard factor-analytic
model, the restriction of the variables p., to binary values converts the
computational problem into a much more difficult, combinatorial one. As
we have currently developed it, the computer program, ADCLUS, for this
type of additive cluster analysis [Arabie & Shepard, 1974] proceeds in two
successive phases; a nonmetric and then a metric one. In the first phase,
combinatorial methods are used to generate an ordered list of subsets with
potentially positive weights that is invariant under monotone transformations
of the data. In the second phase, a modified gradient method is then used
to estimate optimum weights for these subsets and to eliminate all subsets
for which the weights become sufficiently small.

As an illustration, Table 1 presents our nonhierarchical reanalysis
of Miller and Niecly's [1955] data on the confusions among 16 consonant
phonemes in the presence of white noise. These are the same data that have
already bheen analyzed by a variety of more standard methods of multi-
dimensional scaling and hicrarchical clustering (see Fig. 8, Shepard {1972¢]
and, also, Wish and Carroll [in pressj). In this case, approximately 99%
of the variance was accounted for by the first 30 subsets (a representation
that, in terms of number of parameters, is roughly comparable to the two-
dimensional spatial solution which also accounted for about 999, of the
variance). The first 16 subsets (roughly comparable to a one-dimensional
golution) are listed in Table 1, in rank order according to their estimated
weights. The obtained subsets appear to be readily interpretable except,
possibly, for the four (ranked 3, 8, 10, and 13) for which the interpretations
are given in parentheses. And the last three of these subsets, despite their
uncertain interpretations, are very likely reliable in view of the facts (a) that
the 8th {consisting of [b], {v], and [&]) emerged repeatedly in hierarchical
analyses of independent sets of data [Shepard, 1972c], (b} that the 13th
(consisting of [pl, [fl, and [e]) is, according to distinetive feature schemes,
identical in structure to the 8th except for voicing, and (¢) that the 10th
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(consisting just of [b] and [v]) is contained entirely within the 8th. What
these results, along with those in Shepard [1972¢], seem to indicate is the
need for some revision of the distinctive feature schemes on the basis of which
the interpretations were attempted.

The results show a marked departure from a strictly hierarchical struc-
ture. The overlapping nature of the obtained subsets is apparent in Fig. 13,
where the first 16 are embedded as closed curves in the spatial configuration
used earlier for Fig. 8A. Note, for example, that the relatively back {ricatives,
[z] and [3], now cluster both with the relatively back stops, [g], and [d],
and alse (through [z]) with the relatively front fricatives, [v] and [3]. Like-
wise, the front unvoiced stop [p] clusters both with the other unvoiced stops,
[t] and [k], and (as noted above) with the relatively front unvoiced fricatives,
[f], [6). Finally, the overlapping clusters form chains connecting the four
progressively further back unvoiced fricatives, [f], [e], [s], and [[], and, in
parallel fashion, the four progressively further back voiced fricatives, [v],
[8), [2), and {3}, in & way that was not possible in the representation (Fig. 8)
obtained by the hierarchical method.

The results of this early test application of this nonhierarchical method
of additive cluster analysis encourage me to believe that methods based on
models quite different from those underlying standard methods of lmulti-
dimensional scaling can provide potentially useful, complementary informa-
tion about the psychological structure underlying a set of objects. Our
current efforts are being directed toward improving the efficiency of the
iterative method used to adjust the weights and to eliminate unimportant

TABLE 1
Nonhierarchical Additive Cluster Analysis of Confusion Measures
of Similarity Among 16 Consonants
(Data from Miller and Nicely [1955])

Rank Weight FElements of Subset Interpretation
1st, 282 fo front unvoiced fricatives
2nd .214 dg back voiced stops
3rd .196 pk {unvoiced stops omitting t)
4th L1587 ptk unvoiced stops
5th .155 v front voiced fricatives
6th .129 m n nasals
7th .090 0 s middle unvoiced fricatives
8th .074 bvd (front voiced consonants)
9th 071 s back unvoiced fricatives

10th 061 b v (front votced consonants}

11th .050 dgz3 back voiced consonants
12th .044 78 middle voiced fricatives
13th 044 pfae (front unvoiced consonants)
14th .035 z 3 back voiced fricatives

15th .033 vzd front & middle voiced fricatives

16th 030 £23 back voiced consonants
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subsets, and toward investigating the stability of the weights for independent;
sets of data and as more or fewer subsets are eliminated.

CONCLUSION

After struggling with the problem of representing structure in similarity
data for over 20 years, | find that a number of challenging problems still
remain to be overcome—even in the simplest case of the analysis of a single
symmetric matrix of similarity estimates. At the same time, I am more
optimistic than ever that efforts directed toward surmounting the remaining
difficulties will reap both methodological and substantive benefits. The
methodological benefits that I forsee include both an improved efficiency
and a deeper understanding of “discovery’” methods of data analysis. And
the substantive benefits should follow, through the greater leverage that
such methods will provide for the study of complex empirical phenomena—
perhaps particularly those characteristic of the human mind.

NASALS

6th

UNVOICED == ——— e e . » VOICED

FRICATIVES

Fraure 13
The first 16 clusters from Table 2, embedded in the two-dimensional spatial con-

figuration (of Fig. BA) representing the same confusion measures of similarity among the
16 consonant phonemes.
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2 Multidimensional Perceptual Models and
Measurement Methods*
J. Douglas Carrofl and Myron Wish

A. Properties of a Proximity Function

Given a measure of proximity, defined on pairs of stimuli, we might
ask what properties this measure should have. Assuming that the stimuli
can be described in terms of a finite set of underlying dimensions, let x;,
represent the value of stimulus j on dimension ¢, and x; stand for the
vector (or point in the multidimensional space} representing the jth
stimulus. Let p(x;, xi:) = p,z be the proximity between j and k. Consider
now the properties this function should have.

First, it would seem that as two stimuli “approach” one another, thejr
proximities to any third stimulus should approach one another, That is,

x -y 1implies pix, z) - p(y, ) for all z (1)

(where a > b means a approaches b). This conmtinuity assumption, of
course, says nothing about how p{x, y) should behave as x and y approach
one another. It would seem, however, that any reasonable proximity func-
tion should have the property that no stimulus can be more proximal to
some other stimulus than to itself. This implies

p(x, ¥) < min {p(x, x), p(y, y)] {?)
Properties (1) and (2) would seem to be the least we would expect
of any reasonable proximity measure. An additional property that might
be assumed (but not always) is
p(x,x) =ply,y) =p for all x and v, (8)
which says that all the “self-proximities” are the same. Equations (2} and
(3) together imply that
P S pu=p for any 7, k, L (4)
[where pj = p(x;, x:)]

*reprinted from E. C. Carterette and M. Friedman, Handbook of Perception, 2, 1974,
pp. 395-412 '
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We may also add the following symmetry assumption:

Pir = Pry for all 7, k {5)

which says that order is irrelevant to proximities. Although for certain
kinds of stimuli (e.g., sequentially presented auditory stimuli) this may
not be realistic, such a symmetry assumption seems quite reasonable for
most stimulus domains,

If we define the dissimilarity (or antiproximity) between j and % as

S = P = Db (6)

then the following hold for 8:
bp = 8;5=0 {positivity) (N
dip = On; (symmetry), (8)

making § a semimetric. A semimetric defined on a space satisfies continuity
plus all the metric axioms except the triangle inequality.

B. The Triangle Inequality

All we need add to such a semimetric to make it a mefric (and thus,
to make the stimulus space a metric space) is the triangle inequality. The
triangle inequality states

di < dp + du forallj, k, 1 (triangle inequality) (9)

where the d’s are interpreted as distances between the entities referred to
by the subscripts. If d satisfies properties (7), (8), and (9) (the metric
axioms), it is a metric.

Since the proximities and thus the dissimilarities, §, are assumed to be
measured only ordinally, it is quite reasonable to assume that, among the
class of permissible monotonic functions, there is at least one that will
transform them into distances. In fact, it is trivial to do this for any finite
set of points, simply by defining the monotone function by adding a suitably
large constant to the mixed &’s (leaving the unmixed equal to 0). The smal-
lest constant that will work is

¢min = max (8;; — 8 — Buz) (10)
Fikl
so that we may define 4 by

dix = 8 + Cmin forj = k; (11)
d;; =0 for all 7. (12)

Of course, any larger constant ¢ > ;. would also convert the &’s into
d's satisfying the triangle inequality, but ¢n;, is the smallest one that will
do the job. In fact c.., is one of the estimates of the additive constant used
to convert comparative (interval scale) distances into (ratio scale) dis-
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tances in the now classical metric scaling procedures described in Torgerson
(1958). This particular method of estimating the constant was justified by
assuming that some set of three points lie exactly on a straight line in the mul-
tidimensional space. It seems simpler to us to justify it as the smallest addi-
tive constant guaranteeing satisfaction of the triangle inequality.

Thus we see that even this fairly trivial monotone function can convert
essentially any set of dissimilarities into “distances” (i.e., numbers that
at least satisfy the metric axioms). It is not unreasonable, therefore, to
suppose that a more interesting function might be available to do this. As
Shepard (1962a,b) has pointed out, the existence of a monotone function
that assures satisfaction of the triangle inequality is not, in general, a very
interesting condition—not, that is, without some other constraint. Shepard
speaks of “low dimensionality” as being the right additional condition. This
is not terribly interesting, either, unless the underlying metric (which is
assumed monotonically related to proximities or antiproximities) is
assumed to be Euclidean or a member of some fairly limited family of
metrics. There is a kind of trading relation between dimensionality and
complexity of the metric assumed. By assuming a sufficiently complex
metric {which could still be continuously related to parameters of the stim-
ulus space) one could obtain low-dimensional solutions in which distances
relate monotonically to any proximities whatever. Thus, if we are consider-
ing the possibility of very general metric spaces, it would seem that Shep-
ard’s condition of low dimensionality must necessarily be supplemented
by a condition of “simplicity of metric.” After describing and illustrating
some multidimensional scaling methods, we shall discuss some non-Eucli-
dean metrics that hdve been considered in psychology.

C. Violations of the Metric Axioms

Let us assume we have a matrix of antiproximities (e.g., dissimilarities)
for n stimuli or other entities. In the typical situation there is only a
half-matrix, without diagonal, of data values. By imposing the constraint
8;x = &;, and treating the diagonals of the matrix (the §,;’s) as all tied
at a value less than any of the nondiagonal &’s, the rest of the matrix could
be filled in.

When the physical identity of a stimulus is not obvious (e.g., degraded
acoustical or visual stimuli), it is common to collect proximities data as-
sociated with the diagonal cells (which indicate the dissimilarity between
each stimulus and itself). In some cases it makes sense to collect data on
both the (jk) and (kj) pairs—for example, when order effects are likely
to occur, Systematic nonsymmetries {or any nonsymmetry not accountable
for by chance) may cast doubt on the existence of an underlying metric
space, since they imply violations of the symmetry axiom. Likewise, the
failure of the self-dissimilarities to be equal to each other and less than

any nondiagonal dissimilarities violates the positivity axiom of Eq. (7).
" In some situations it is appropriate to take out row and column effects
before analyzing the matrix of interactions by multidimensional scaling.
An example of this is Coombs’s (1964, 1971) analysis of journal citation
data. The rationale for removing the main effects, is that differences in
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the overall number of citations made or received by a journal may distort
the multidimensional representation of relatedness among the journals. In
many instances -the matrix of interactions will be more symmetric than
the original data matrix.

If the violations of the metric axioms are severe, it is likely (but not
certain) to be unreasonable and unproductive to seek a multidimensional
representation of the data. Some indications of severe violations might be
that the diagonal values were of about the same magnitude as the non-
diagonal values, or that the rank ordering of proximity values in a row
was unrelated to the ordering in the corresponding column. In most in-
stances, however, the violations of the metric axioms are mild enough to
justify a multidimensional scaling analysis. The simplest way to deal with
nonsymmetries is to fit a multidimensional model to the nonsymmetric
matrix, thereby providing a space for the symmetric part of the data. In
effect the distance model could be regarded as a first approximation, and
the nonsymmetries could be studied separately. For example, Wish
(1967a,b) explored the nonsymmetries in matrices of confusions among
Morse code signals and related rhythmic patterns, discovering that the
probability of a “same” response to a pair of sequentially presented signals
was greater when the shorter of the pair was presented first. The systematic
nature of the nonsymmetries provides some information about the way
such signals are stored and about the judgmental process.

Another approach to the problem of nonsymmetric matrices is to sym-
metrize the matrix by averaging the (jk) and (kf) entries. This might be
expected to cancel out any significant order effects, leaving only the data
that can be accounted for by an asymmetric distance model. A good exam-
ple of this approach is provided by Shepard’s (1957) analysis of stimulus
generalization data. He proposed a rational model involving response bias
to account both for asymmetries and for discrepancies in the diagonals, or
self proximities. While this is an oversimplification, in essence, Shepard
assumed that the observed probability p;. of the response appropriate to
stimulus & being given when stimulus j was presented is given by

pi = wiw T, (13)

where wi® and w{" are weights associated with the jth stimulus and the
kth response, respectively, and =; is a symmetric proximity measure

satisfying (4) and (5), and assumed to be related by a decreasing mono-
tonic function to distances in a metric space. (The monotonic function was

assumed to be a negative exponential in Shepard’s work, while the space
was assumed to be Euclidean.)

Since, without loss of generality it is possible to assume the common
value of =;; and =, to be 1, Eq. (13) implies that

Tk = PikPii/ PiiPek . (14)

This method of symmetrizing was used by Shepard in his analysis of the

Milier—Nicely data on confusions between consonant phonemes (to be dis-
cussed later in this chapter).

Another way to take into account the lack of symmetry and of maximal-

ity of the diagonal values (in a proximity matrix) is to trcat thc matrix
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as a conditional rather than as an unconditional proximity matrix, A row
(column) conditional proximity matrix is one in which the order within
a given row (column} is meaningful, bui proximities in different rows
(columns) are not comparable. Such a matrix generally arises when
the row and column elements have different meanings or play different
roles—for example, in a stimulus identification experiment in which the
rows are associated with stimuli and the columns with responses, or when
the entries in a row {column) indicate the rank order of similarity to the
standard stimulus associated with that row (column). In terms of formal
assumptions, the proximity matrix is row-conditional if and only if proxi-
mities are related to distances by

Mi(pi) 22 dp, (15)
with M; monotone nonincreasing.

The difference here is that we are assuming a different monotonic fune-
tion for each j (corresponding to a row of the proximity matrix). A cal-
umn-conditional matrix would be obtained by replacing M; with My* in
Eq. (15). In the unconditional case, there would just be a single unsub-
scripted M. The stimulus generalization paradigm that Shepard utilized
could also be regarded as producing a row-conditional proximity matrix,
although under Shepard’s model, a suitable transformation of the matrix
leads to an unconditional matrix.

Versions 4 and 5 of Kruskal’'s mpscar (Kruskal & Carmone, 1969)
and certain programs in the Guttman and Lingoes series (Lingoes, 1966)
have the facility to analyze row or column conditional proximity matrices,
in effect fitting a different monotone function to each row (column). In
principle, these programs can even handle data matrices in which the rows
and columns represent distinct sets of clements—for example, stimuli and
responses, or individuals and stimuli (as in the multidimensional unfolding
model—see Coombs, 1964). A multidimensional scaling analysis of such
a matrix would provide a “joint space” in which there was a point in the
space for each row and for each column. The multidimensional space could
conceivably reveal what kinds of stimulus—response or order effects were
occurring. At one extreme, the jth row point and the jth column point
may be very close together, suggesting no biases. At the other extreme,
the column points may be related in a very systematic way to the row
points, as, for example, by a tendency to shift in a specified direction. It
should be pointed out, however, that there are difficulties in practice in
determining a “nondegenerate” multidimensionat space from such an “off-
diagonal” or “corner matrix” (or from any matrix in which there are large
blocks of missing data—see Carroll, 1972, Kruskal; 1972; Kruskal & Car-
roli, 1969).

Perhaps a more elegant way to account for nonsymmetries is to build
them into the metric space model (see, e.g., Nakatani, 1972). This
amounts, in one sense, to redefining distances in the space so as to drop
the symmetry axiom of Eq. (5). In another sense, it might be viewed
simply as superimposing an additional process onto the basic metric space
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medel. This is the way Shepard apparently conceived of his response bias
model—as a way of preserving the notion of symmetric distances rather
than as defining asymmetric distances. The kind of bias parameters Shepard
assumes could be introduced explicitly into the model, however, rather than
simply being canceled out by averaging, thus creating a composite “‘asym-
metric distance” model,

Kruskal (personal communication) has experimented with a model that
provides for a nonsymmetric distance function. In this model the jth row
point is related to the jth column point by a “drift vector,” corresponding
to a fixed shift in one direction. In a variant of the model, the appended
vector might be the onc pointing from one of the points toward (or away
from) a specific fixed point in the space. This could be thought of as imply-
ing a kind of regression toward a stereotype or schema corresponding to
the fixed point.

Keeping in mind the possibility of violations of the metric axioms, and
other potential problems such as missing data, we shall restrict our atten-
tion for the moment to the standard case of a half-matrix (without diago-
nal) in which there are no missing entries. However, we do not necessarily
restrict our attention to cases in which the metric axioms are satisfied. We
shall, in fact, consider a sequence of increasingly general classes of proxim-
ity models, ranging from a very specific metric (the Euclidean) through
various non-Euclidean metrics, to semimetrics (in which the triangle in-
equality is dropped) and finally the case in which all that is assumed is
that similarity or proximity is continucusly related to perceptual parame-
ters. Cutting across this hierarchy is another distinction—that between so-

called metric and nonmetric models and analyses, in which the proximities
are treated as being on an interval (or stronger) scale, versus being merely

ordinally measured.

MFETRIC, NONMETRIC, AND “CONTINUITY” SCALING

The distinction between metric and nonmetric multidimensional scaling
was first made by Coombs (1958) and later elaborated by Kruskal
(1964a), who used the term nonmetric multidimensional scaling to mean
much the same as Shepard’s (1962a,b) term analysis of proximities. The
term has to do with the strength of the assumed scale properties of the
data (proximities or antiproximities). In Stevens’s terms, if the data are
assumed to be measured on a ratio or interval scale, the analysis is (or
ought to be) a metric one. If the data are assumed merely ordinal, then
the analysis is (or ought to be) nonmetric.

FFor an analysis to be metric it is not necessary that the original data
be linearly related to distances; only that they be convertible to at least
interval scale distances by some known transformation. For example,
Shepard’s (1957) assumption of a negative exponential connecting proxim-
ities to distances meant that a logarithmic transformation would carry the
(suitably symmetrized) proximities into ratio scale distances.

What might be called the “classical” metric method of multidimensional
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scaling is the one described in Torgerson’s (1958) book. The theoretical
basis for this was supplied by Young and Householder (1938}, who proved
a theorem that enabled determination of the minimum dimensionality of
the space required to accommodate a given set of Euclidean distances
among » points. A by-product of this theorem was a method of construct-
ing the space, and indeed, of determining whether the distances could be
accommodated in any Buclidean space. This constructive method was used
by Richardson (1938) to implement the first known application of multi-
dimensional scaling (see also Klingberg, 1941). The method essentially
lay fallow until the early 1950s, when methodological improvements by
Torgerson (1958), Messick and Abelson (1956) and others, together with
the advent of high-speed digital computers, made it feasible to deal with
fairly large data sets in cases of reasonably high dimensionality. This classi-
cal metric method can be outlined as follows:

Similarities data were first collected by one of several means, the most
popular being the complete method of triads (in which the subject judges
whether stimulus A is more like B or C for every triad A, B, C of stimuli)
or the methods of equal appearing or of successive intervals (in both of
which every pair of stimuli is placed in one of a series of ordered cate-
gories). These data were then typically put through one of the Thurstone-
type undimensional scaling procedures to produce interval scale measures
of distances (which were called comparative distances).

Since ratio scale distances were needed, the problem of estimating the
“additive constant” arose. A number of methods were worked out for esti-
mating this constant, the simplest (and possibly the best in a number of
ways) being the eStimate c;, defined in Eq. (10), which, as discussed
earlier, is the smallest constant guaranteeing satisfaction of the triangle
inequality. Some methods of data collection (e.g., Helm, 1964; Indow,
1960a,b) could plausibly be assumed to lead directly to ratio scale dis-
tances, so that many of these steps would be avoided. Once ratio scale
distances were obtained, one proceeded to convert them to scalar products.
Torgerson and others derived equations for calculating (estimated) scalar
products around an origin placed at the centroid (or center of gravity)
of all n points. (The Young—Householder results required placing the origin
at one of the points, and getting scalar products of vectors from that point
to the p — 1 remaining ones. This solution was unsatisfactory both estheti-
cally and statistically.)

The simplest way to describe the conversion from Euclidean distances
to scalar products is that one double centers the matrix whose general
entry is —1/2d?. Double centering is equivalent to taking out both row
and column effects in analysis of variance, leaving interaction numbers.
In this case, the interaction numbers are the scalar products. The scalar
product between stimuli j and %, usnally called b is defined as

T Txe . (16)

bjk =
t

[ o
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In matrix notation, this can be written as
B=XXx, (17)

where B is the n X n matrix of scalar products and X is the (initially
unknown} n X m matrix of coordinates of the n points in m dimensions.
This equation looks a great deal like the fundamental equation of factor
analysis, the,main difference being that B replaces R (the correlation
matrix). The matrix B can, in fact, be viewed as analogous to a covariance
matrix, and methods closely related to factor analysis (or its statistical
cousin, principal components analysis) can be used to determine the X
matrix of appropriate dimensionality that best accounts for the scalar prod-
ucts. See Torgerson (1958) for further details.

A. Other Metric Scaling Techniques

In addition to this classical metric multidimensional scaling, there are

other metric methods that are closely related to the newer nonmetric
methods, in that they utilize computer-implemented iterative numerical

procedures to fit a specified metric model to the data. This really amounts
simply to replacing the monotone function central to the nonmettic
methods with some specified function (linear, polynomial of some degree,
or other} which may or may not be monotone.

Kruskal’s MDscAL, for example, allows use of polynomial functions up
to degree 4 (including linear functions either with or without the constant
term). The program used by Shepard to analyze the Miller—Nicely data
(to be discussed subsequently} incorporated the explicit requirement that
the function converting distances into proximities be a negative exponen-
tial. These approaches are metric in the general sense that interval-scale
properties of the data are used. Of course, as functions with increasing
numbers of parameters are used, this distinction becomes less and less
meaningful; with enough parameters almost anything can be fit. (A mono-
tone function, in a sense, has as many parameters as data points, but with
strong inequality constraints on the values these parameters may legiti-
mately assume.)

B. Nonmetric Multidimensional Scaling

The term nonmetric multidimensional scaling was first introduced by
Coombs (1958), who had something in mind which is a little different
from what is now called nonmetric scaling. The method Coombs and his
co-workers proposed was based on nonmetric (i.e., merely ordinal) prox-
imities data. It was nonmetric, too, in the sense that the space determined
was not, in any well-defined sense, a metric space, since the values of
stimuli on dimensions were defined only ordinally. There was, thus, no
way to calculate interpoint distances, even if a specific metric such as the
Euclidean was assumed. To do this, one would need to know the monotone
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function (different for each dimenison) transforming the rank order coordi-
nates into at least interval scale coordinates. In this sense, i.e., that both
data and solution are nonmetric, Coombs’s procedure could be termed
“doubly nonmetric.”

It was Shepard (1962a,b) who first showed (by producing a computer
algorithm)} that it was possible to produce essentially metric solutions from
such purely nonmetric (or ordinal) proximities data. These latter were
metric in the dual sense that coordinates were defined up to interval scale
and that the space was indeed a (Euclidean) metric space.

Shepard’s method, which he called “analysis of proximities,” started out
with the n stimuli arranged in what might be called the “maximum en-
tropy” configuration (a regular simplex in # — 1 dimensions—the multi-
dimensional generalization of the equilateral triangle in two dimensions
or the regular tetrahedron in three). He then introduced two processes,
one tending to decrease dimensionality and the other to increase agreement
with the data (in an ordinal sense). The dimensionality-reducing process
is now primarily of historical interest. The approach to dimensionality esti-
mation now almost universally used entails finding solutions in a number
of different dimensionalities, and using the dimensionality versus goodness-
of-fit curves in some way to judge how many dimensions are appropriate
for the data. Shepard’s notion, on the other hand, was to start in the highest
possible dimensionality, but to impose forces tending to reduce that dimen-
sionality to the smallest possible. Once that dimensionality was estimated,
the best configuration in that smallest dimensionality was determined. The
process he used to decrease the dimensionality (what he called the 8 pro-
cess) was based on the idea of increasing large distances and decreasing
small ones (one can see intuitively that this would tend to straighten out,
say, a two-dimensional set of points on an arc of a circle into a one-dimen-
sional set whose locus is a straight line). When this had seemingly reduced
dimensionality as much as possible, the points were then projected exactly
into a space of the “right” dimensionality, and the other, or « process,
was continued in this “right” dimensionality (without the 8 process). The
a process (which was used together with the g process in the first phase,
and then alone) quite simply tended to increase distances between points
that were too close together (relative to the ordinal proximities data) and
to decrease distances between points too far apart. It did this by setting
up what can be conceived as force vectors from each point, oriented either
toward or away from each of the n — 1 other points. If the rank order
of the distance were greater than (less than) that of the corresponding
dissimilarity, the vector would be pointed away from (toward) the other
point. The magnitude of the vector was proportional to the magnitude of
the discrepancy. If the two rank orders agreed exactly, the force vector
had zero magnitude, which is the same as saying there was no force vector
in this case, These n — 1 force vectors (some possibly with zero magni-
tude) were then summed for each point, producing a resolution vector
that could be thought of as the resolution of all the attractive and repulsive
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forces operating on that point. Each point was allowed to move in the
direction of its resolution force vector a distance proportional to the magni-
tude of the force (the constant of proportionality being the « of the o-pro-
cess, which corresponds to what numerical analysts would call the step-
size), and these new force vectors were computed. This process was con-
tinued until, ideally, the system was in perfect equilibrium (i.e., all force
vectors had zero magnitude). Since this state of perfect equilibrium is
seldom actually reached, however, in any such iterative procedure, some
criterion of being close enough to equilibrium must be used.

In order to distinguish it from Shepard’s rather different algorithm,
Kruskal borrowed Coombs’s term nonmetric multidimensional scaling to
describe his procedure. 1t is important to realize that it is the proximitics
data that are nonmetric in this case, not the solution. Some authors, notably
Beals, Krantz, and Tversky (1968) call this ordinal rather than nonmetric
scaling. This nomenclature, although possibly more appropriate, is not
favored by usage. Green and Carmone {1970) have called methods such
as those of Shepard and Kruskal nonmetric, whereas they call Coombs’s
procedure fully nonmetric {to emphasize that both data and solution are
nonmetric).*

Kruskal’s (1964) mpscaL mcthod improved Shepard’s method in two
important ways: (1) The notion of optimizing an explicitly defined mca-
sure of goodness (or badness) of fit was introduced; (2) an explicit numer-
ical method, the method of gradients, or steepest descent was used.$ Kruskal
called his goodness-of-fit measure sTRESS, defined in his original paper as

ZZ(ds — Cf;‘lc)f]”2
Z 2, ’

where the d's are distances in the underlying metric space, and the d’s
are related to proximities data by a nonincreasing monotonic function. This
formula for STRESS is now called STRESSFORM 1. Another STRESs formula,
called STRESSFORM2 has now been incorporated as the standard form.
STRESSFORM2 differs only in the normalization factor in the denominator
(under the radical). It is normalized by dividing by 3;3u(d: — d)*
rather than 3 ;3,42 where d is the mean of the di’s.

{18)

STRESS = [

* The first author of this paper (Carroll) has used the term “fully nonmetric”
elsewhere (e.g., Carroll & Chang, 1970; Carroll, 1972) to distinguish a technique
whose solutions are completely invariant under monotone transformation of the
data and which guarantees (at least “in principle”) a perfect solution (one where
rank order of distances agrees perfectly with that of the data) when one is possible.
This was contrasted with what was called a “quasi-nonmetric” procedure, where
one or the other {or both) of these conditions is only approximately true. This
usage of the term should not be confused with that of Green and Carmone (1970).
Perhaps this terminological difficulty could be resolved by calling the Coombs
procedure “doubly nonmetric,” as was suggested carlier.

71t has very recently been discovered by Kruskal and Carroll that Shepard’s
algorithm could in fact be characterized as a gradient method optimization of an
explicitly defined measure of fit. This was not known at the time (1964), however.
Furthermore, the measure of fit Shepard used as criterion in his method was
different from the criterion being optimized.



Perceptual models and measurement methods 53

Given a particular metric in the underlying space (Euclidean, say) and
a particular dimensionality (say m), the objective was rigorously defined
as that of minimizing STRESS over the class of all m-dimensional spaces
(with the appropriate metric) and over the class of all nonincreasing mono-
tonic functions. Formally, we can think of STRESS as a function of X, the
coordinate matrix, and of M, the monotonic function converting proxim-
ities into distances. If we represent that function as S(X, M), we can set
our task as the minimization over all X and M of STRESs = S(X, M).
Phrased in this way, this seems like a formidable task. However, Kruskal
was able to take advantage of one very important simplification, which
is expressed in the following seductively simple-looking formula

min §(X, M) = min [min S(X, M)],
XM X M

whose import is that if we can find a way to find the M minimizing S
for a fixed X, then we arc a long way toward our goal of minimizing S
over X and M. It turns out that there is a well-defined and finite aigorithm
for finding the best M, given a specified X. Since the X matrix implies
a set of distances, we could just as well assume that a set of fixed distances
is given. The problem is to define the d’s as a monotone function M of
the &’s (the proximity, or antiproximity values) that minimize STRESS as
defined in (18). Since the ds do not enter into the denominator, this is,
in fact, equivalent to finding the g that minimizes the numerator; ie., that
produces the best least squares approximation to the d’s. This problem
of least squares monotone regression was first solved by van Eeden
(1957a,b) and others (Bartholomew, 1959; Barton & Mallows, 1961;
Miles, 1959) and was adopted by Kruskal (1964) to solve this problem
of finding the best M. Since M could now easily be solved for any X,
we can in effect redefine STRESS as a function of X alone;i.e.,

sTrESS = S(X) = [min (X, M)],
M

50 that the seemingly simpler problem now arises of finding X minimizing
S{X). The numerical method that Kruskal used to solve the problem
actually turns out to be nearly equivalent to the « process described for
Shepard’s analysis of proximities. The major (and critically important)
difference is that the algebraic magnitude of the discrepancy for points
i and j is effectively defined to be proportional to d;; — d;. (This is not
immediately obvious from Kruskal’s gradient formula, but it can be estab-
lished by some algebraic manipulation. The effective step-size, however,
is changed somewhat.)

C. An Nlustrative Application of Multidimensional Scaling

Before discussing further issues and details we would like to illustrate
multidimensional scaling by an application to some data from Miller and
Nicely’s (1955) study of confusions among English consonants. The sub-
jects in Miller and Nicely’s experiment listened to female speakers read
one-syllable stimuli, such as pa, ta, and ka, from randomized lists, and
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DIM 2: NASALITY
©
€

Ve eSS ] ————~ [VoicED]

DIM 1: VOICING

Fie. 1. Two-dimensional space from Shepard’s (1973) analysis of data (see Table
I} from Miller and Nicely’s (1955) study of confusions among consonants.

wrote down the consonant they heard after each syllable was spoken. There
were 17 experimental sessions in each of which the speech transmission
circuit was degraded in a different way, In addition to the standard condi-
tion, which had a frequency response from 200 to 6500 Hz and a signal-
to-noise ratio of 18 dB, there were five noise conditions (signal-to-noise
ratio decreased from 12 dB to —12 dB in 6-dB steps), six low-pass filtering
conditions (in which frequencies above a specified cutoff were filtered out)
and five high-pass filtering conditions (in which the frequencies below a
specified cutoff were filtered out).

Shepard (1973)* analyzed the pooled symmetrized matrix from the
noise conditions, shown in Table I, by a variant of multidimensional scaling
described earlier, in which an exponential rather than a monotonic fit was
required. {Almost identical results were obtained by using a monotonic
function; moreover, the best fitting monotonic function turned out to be
very close to an exponential decay curve.) The two-dimensional (rotated)
space obtained for these data is shown in Fig. 1. Shepard assigned the
interpretation “voicing™ to the horizontal dimension, since it distinguishes
the voiced consonants (those, which, when spoken, produce vocal cord

* Despite the 1973 reference, the paper was actually written in 1965.
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vibration) from their voiceless cognates. The interpretation “nasality”
given to the vertical dimension reflects the fact that the two nasals, /1 and
n, are separated from the other consonants.

Even though only two distinctive features (voicing and nasality) are
explicitly mentioned in the labels for dimensions, Shepard does point out
that some information regarding affrication and place of articulation is pre-
served in the two-dimensional space. For example, the stops are generally
at opposite extremes of dimension 1, with the fricatives in between.

Shepard further clarified this configuration in particular, and the Miller
and Nicely data in gencral, by applying Johnson’s (1967) hierarchical
clustering procedure to the same confusion matrix ( Table I}.

Johnson’s hierarchical clustering procedure starts with the finest possible
clustering (each point a separate “cluster”) and proceeds to “merge” the
two stimuli with the highest proximity value. (In case there is a tie for
the most proximal pair, all pairs of points with the common value are
merged simultaneously.) The newly merged cluster is treated as a separate
point, so there are now {in general) n — 1, rather than n peints. Distances
must then be calculated between this point and the others. In the “maxi-
mum” method (used by Shepard) the distance of a cluster to another point
(which may be another cluster) is taken to be the largest of the distances
(smallest proximity) between the merged points; in the minimum method,
it is the smallest distance (largest proximity). This process now continues,
but with n — 1 points instead of n, and does not end until all points are
merged into a single large cluster. This process of continual merging pro-
duces a hierarchical clustering, which can be represented as a tree. The
tree generated in this way for the Miller—Nicely data is shown in Fig. 2.
The height of different nodes of the tree is then defined as the distance
between the two points merged at that node. In the maximum method,
this can alse be shown to be the diameter of the largest cluster in the clus-
tering, where diameter is defined as the larpest distance between a pair
of points in that cluster. If this process is applied to proximities rather
than distances or antiproximities, the heights would be replaced by proxim-
ity levels that get smaller as one goes up the hierarchy. In Fig. 2, the heights
have, in fact, been replaced by these proximity levels, and the tree is in-
verted so larger proximities are at the top. Perhaps in this case we should
refer to the “depth” rather than “height” of the clusterings.

Figure 3 shows an embedding of results for five clustering levels (mini-
mum intracluster proximity of .40, .20, .10, 05, and .025) in the multidi-
mensional space for these data. These contours were drawn manually by
Shepard. It is quite important to note, however, that they could be so
drawn; without overlapping or crossing of cluster boundaries, and with
all the clusters appearing to be reasonably compact and connected. Since
the two analyses (multidimensional scaling and hierarchical clustering)
were done quite independently, there was no guarantee that this would
happen. That it did tends to increase the credibility of both analyses, while
also being quite helpful in interpretation of the multidimensional scaling
solution.



Perceptual models and measurement methods 57

FiG. 2. Hierarchical clustering from Shepard’s (1973) analysis of data (see Table
I) from Miller and Nicely’s (1955) study of confusions among consonants. Clusters
at five levels (.40, .20, .10, .05, and .025) are indicated by dashed horizontal lines.

As indicated by the three outermost curves, the clustering at the .025
level partitions the consonants into three broad clusters—the nasals, the
voiced nonnasals, and the voiceless consonants. At the .05 level the voice-
less and voiced consonants both subdivide, making five clusters in all. As
the minimum intracluster value increases from .10 to .20 to .40, the num-
ber of clusters increases from 7 to 11 to 14. Twelve of the clusters at
the .40 level contain a single consonant; the only two-element clusters at
the .40 level are p, k (proximity = .432) and f, 8 (proximity = .423).

Shepard also did separate hierarchical clusterings of the confusion
matrices for each of the 17 experimental conditions. At the levels of each
hierarchical clustering at which there were six clusters and five clusters, ex-
actly the same clusters appeared for the four intermediate noise conditions
(6, 0, —6, and —12 dB). In the two extreme conditions, the confusion rate
was too low (at 12 dB) or too high (-—18 dB) for stable clusters to be
defined. The consistency in these and other clustering results led Shepard

to conclude that “although signal-to-noise ratio is a powerful determiner
of overall level of confusion, it has little or no effect on the internal paitern

of those confusions {Shepard, 19731.”

Whereas the clustering results for the low-pass filtering conditions were
quite similar to those for the noise conditions, the clusterings for the high*
pass filtering conditions were so different that they could not be embedded
very well in the multidimensional space based on the “noise” conditions
(see Shepard, 1973). The correspondence between results for the noise
and low-pass filtering conditions is consistent with the fact (Miller &
Nicely, 1955, p. 350) that the higher frequencies are more susceptible to
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Fic. 3. Embedding of clusters from a hierarchical clustering analysis (Fig. 2) ir
the two-dimensional space (Fig. 1) for the same data (Table I). At a clustering leve
(lowest intracluster proximity)} of .025, there are three clusters; while at a clustering
level of .40, there are 14 clusters.

masking by broadband, or white, noise, since the sound energy is generally
weaker in the higher frequencies. In Chapter 13 in this volume (Wish &
Carroll, 1974), we describe a later analysis of the Miller-Nicely data
(Wish, 1970a), which gives more information about the confuston structure
for high-pass filtering conditions and which allows for more direct and sen-
sitive comparisons of the data for different kinds and degrees of acoustical
degradations.





