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Multidimensional Scaling

Multidimensional scaling (MDS) refers to a family of models where the structure in a
set of data is represented graphically by the relationships between a set of points in a
space. MDS can be used on a wide variety of data, using different models and
allowing different assumptions about the level of measurement.

In the simplest case, a data matrix giving information about the similarity (or
DISSIMILARITY) between a set of objects is represented by the proximity (or distance)
between corresponding points in a low-dimensional space. Given a set of data,
interpreted as “distances”, it finds the map locations which generated them.

For example, in a study of how people categorize drugs, a list of drugs was elicited
from a sample of users and non-users; 28 drugs were retained for a free-SORTING
experiment and the co-occurrence frequency was used as the measure of similarity.
The data were scaled in 2-dimensions, producing the following map:
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In the case of perfect data, the correspondence between the dissimilarity data and
the distances of the solution will be total, but with imperfect data, the degree of fit is
given by size of the normalised Stress (residual sum of squares) value, which is a
measure of badness of fit. In this case the fit is excellent (stress, =0.097) and it is
three times smaller than random expectation. The solution configuration yields three
highly distinct clusters (confirmed by independent hierarchical clustering) of Mild
stimulant drugs (core prototypes: tobacco; caffeine), Hard recreational (core:
Cocaine, Heroin) Household Prescription (core: Aspirin Penicillin).

MDS can be either exploratory (simply providing a useful and easily-assimilable
visualization of a data set ) or it can be explanatory (giving a geometric representation
of the structure in a data set, where the assumptions of the model are taken to
represent the way in which the data were produced). Compared to other multivariate
methods, MDS models are usually distribution-free, make conservative demands on
the structure of the data, are unaffected by non-systematic missing data, can be used
with a wide variety of measures, and the solutions are usually readily interpretable.
The chief weaknesses are relative ignorance of the sampling properties of stress,
prone-ness to local minima solutions and inability to represent the asymmetry of
causal models.



THE BASIC MDS MODEL

The basic type of MDS is the analysis of 2-way, 1 mode data (e.g. a matrix of

correlations or other dis/similarity measures), using the Euclidean distance model. The
original metric version, “classical” MDS converted the “distances” into scalar-
products, and then factored or decomposed them into a set of locations in a low-
dimensional space (hence “smallest space analysis”). The first non-metric model was
developed by Roger N. Shepard in 1962, who showed that the merely ordinal
constraints of the data, if imposed in sufficient number, guarantee metric recovery,
and he provided the first iterative computer program that implemented the claim.
Kruskal (1964) gave OLS statistical substance to it, Young developed a frequently-
used Alternating Least Squares program (ALSCAL) and probabilistic MAXIMUM
LIKELIHOOD versions of MDS have also subsequently been developed (e.g.
MULTISCALE, Ramsay ,1978).

VARIANTS OF MDS

The various types of MDS can be differentiated (Coxon 1982) in terms of:

» The data (whose “shape” is described in terms of its way (rows, columns,
“third-way” replications) and its mode (the number of sets of distinct
objects, such as variables, subjects)

= The transformation (re-scaling) function (or LEVEL OF MEASUREMENT, which
specifies the extent to which the data properties are to be adequately
represented in the solution). The primary distinction is non-metric (ordinal
or lower) vs metric (interval and ratio) scaling

= The model (usually the Euclidean distance model, but also covering
simpler Minkowski metrics such as City-Block, and different composition
functions like the vector, scalar products or FACTOR model).

TWO-WAY, ONE-MODE DATA

Any non-negative, symmetric judgments or measures can provide input to the
basic model: frequencies, counts; ratings/rankings of similarity; co-occurrence, co-
location , confusion rates; measures of association, etc. and a two-dimensional
solution should be stable with 12 or more points Non-metric analyses use
distance models; metric models additionally may use vector/factor models. Stress
values from simulation studies of random configurations provide an empirical
yardstick for assessing obtained stress values.

2-WAY, 2-MODE DATA

Rectangular data matrices (usually with subjects as rows and variables as columns)
consist of profile data or preference ratings/rankings. Distance (unfolding) or
vector models are employed to produce a joint BIPLOT of the row and column
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elements as points. The vector model (MDPREF) is formally identical to simple
CORRESPONDENCE ANALYSIS, and represents the row elements as unit vectors.
Because such data are row-conditional, caution is needed in interpreting inter-set
relations in the solution. If the sorting data of the example were entered directly
as (individual x object matrix, with entries giving the category number) then a
program such as MDSORT will represent both the objects and the categories.
3-WAY DATA

The “third way” consists of different individuals, time or spatial-points, sub-groups
in the data, experimental conditions, different methods etc. The most common
variant is 3-way, 2-mode data (a stack of 2-way, 1-mode matrices) -- which when
represented by the metric weighted distance model, is termed INDSCAL
(Individual Differences Scaling, Carroll 1970). In the INDSCAL solution, the
objects are represented in a Group Space (whose dimensions are fixed, and
should be readily interpretable), and each element of the third-way (“individual”)
has a set of non-negative dimensional weights, by which the individual
differentially shrinks or expands each the dimensions of the Group Space to form
a “Private Space”. Individual differences are thus represented by a profile of
salience weights applied to a common space. When plotted separately as the
“Subject Space”, the angular separation between the points represents the
closeness of their profiles, and the distance from the origin approximately
represents the variance explained. Returning to the example, If the individuals
were divided into sub-groups (such as Gender x Usage) and a co-occurrence
matrix calculated within each group, then the set of matrices forms 3-way 2-mode
data, and their scaling by INDSCAL would yield information about how far the
groups differed in terms of the importance (weights) attributed to the dimensions
underlying the drugs-configuration.

Other variants of MDS exist for other types of data (e.g. Tables, triads), other
transformations (parametric mapping; power functions) and other models (non-
Euclidean metrics, simple conjoint models, discrete models such as additive trees),
and also for a wide range of three-way models and hybrid models such as
CLASCAL (a development of INDSCAL which parameterises latent classes of
individuals). Utilities exist for comparing configuration (Procrustean Rotation) and
extensions for up to 7-way data are possible.

An extensive review of variants of MDS is contained in Carroll and Arabie (1981)

and a wide-ranging bibliography of 3-way applications is accessible at:
http://rulsO1.fsw.leidenuniv.nl/~kroonenb/document/reflist.htm

APPLICATIONS
For the basic model, and for the input of aggregate measures, restrictions on the
number of cases is normally irrelevant. But for 2-way,2-mode data and 3-way
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data, applications are rarely feasible (or interpretable) for more than 100
individual cases. In this case “pseudo-subjects” (subgroups of individuals chosen
either on analytic grounds, or after CLUSTER ANALYSIS) are more appropriately
used. Disciplines using MDS now extend well beyond the original focus in
psychology and political science, and include other social sciences, such as
economics, as well as biological sciences and chemistry.
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MewhDSR FINAL CONFIGURATION: dimensions 1 and 2

Stress 1 =0.097
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