DATA & Distance

(see TUG A2.1)

Distance measure:

$$d(i,i) >= 0$$
 Non-negativity $d(i,j) = d(j,i)$ Symmetry if $d(i,j) > d(k,l)$ and $d(k,l) > d(m,n)$ then $d(i,j) > d(m,n)$ Transitivity $d(i,k) + d(j,k) >= d(i,j)$ Triangle nequality

DATA: Dis/similarity Measures

Proximity or Similarity measure (s)

matched by closeness

the higher the value, the more similar

• Dissimilarity measure (δ)

matched by distance

The higher the value, the more different

• Conversion:

Has the form :
$$x = [\max(x) - x] + 1$$

$$s = \max(\delta) - \delta$$

$$\delta = \max(s) - s$$

Transformations & Levels of Measurement

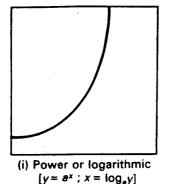
(TUG,

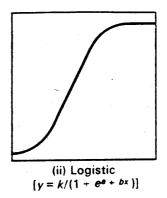
	Name	Permissible Transformat	Preserves	Direct Data	Aggregate measures
	Absolute	Rone	All (true 0)		
M	Ratio	similarity	(a/b) (Unit change)	Counts, rates, distances	
	Interval	linear	(a-b) & origin	Rating	PM Correln. p Covariance σ
N M	Ordinal	monotonic	order	Ranking	Kendall's τ G & K 's γ
	Nominal (inc dichot.)	isotonic	categories	Sorting	χ-sq based Pairbonds

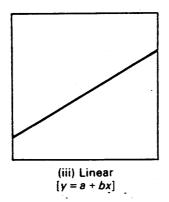
Multidimensional Scaling: Monotonic

Transformations

122 The User's Guide to Multidimensional Scaling







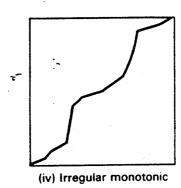
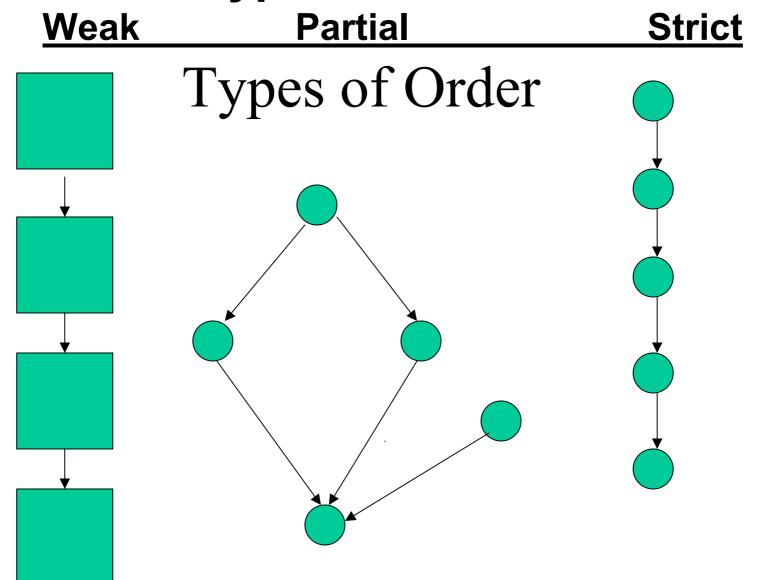


Figure 5.1 Monotone curves

Types of Order:



Distances & Maps

Two (related) problems ...

Given a configuration/map: find the distances (X->D)

(Easy: Given a co-ordinate system, calculate pairwise distances according to formula; scaling factor/unit is arbitrary)

And a more difficult one: the scaling problem...

Given a set of distances, find the map/configuration that generates them

$$(D \rightarrow X)$$

... Rather more difficult ...

Two Solutions ...

- 1. "Classic" Metric MDS: δ ≅d => X
 i.e. Data are treated as if they are/approximate distances (see TUG A5.2)
- It can be done ... more or less ... under certain circumstances ... like
- Error-free data
- Good estimate of the "additive constant"
- Recovery up to a similarity transformation (free rotation, location of axes, scaling factor)
- BUT: The solution is NOT ROBUST!

Solution (2): δ . M(d) Y X

(equals: Non-metric ordinal scaling, 1962 onwards)

But ... Can this be done?

- < NO (Torgerson initially, and rest of the world)
- < Perhaps, (Coombs, Abelson)
- < YES! (Shepard, Kruskal, Hayashi, Guttman)

- ... what, 'recover' quantitative data from ordinal input?
- •What is this, a magic quantifier?
- •What's the trick, then?

1962

- ... here's how and here's why, Shepard
 1962
- "Ordinal constraints, if imposed in sufficient number, act as metric constraints and guarantee in the limit a metric solution"
 - ... plus a program to do it! Shepard
- ... and here's how you justify it as really monotonic and in LS terms (Kruskal 1964)
- ... so that even statisticians love it (MLS, 1977, Ramsay)