A Skimpy Introduction to Matrix Algebra

The purpose of this appendix is to provide readers with sufficient background to follow, and duplicate as desired, calculations illustrated in the fourth sections of Chapters 5 through 14. The purpose is not to provide a thorough review of matrix algebra or even to facilitate an in-depth understanding of it. The reader who is interested in more than calculational rules has several excellent discussions available, particularly those in Tatsuoka (1971) and Rummel (1970).

Most of the algebraic manipulations with which the reader is familiar - addition, subtraction, multiplication, and division - have counterparts in matrix algebra. In fact, the algebra that most of us learned is a special case of matrix algebra involving only a single number, a scalar, instead of an ordered array of numbers, a matrix. Some generalizations from scalar algebra to matrix algebra seem "natural" (i.e., matrix addition and subtraction) while others (multiplication and division) are convoluted. Nonetheless, matrix algebra provides an extremely powerful and compact method for manipulating sets of numbers to arrive at desirable statistical products.

The matrix calculations illustrated here are calculations performed on square matrices. Square matrices have the same number of rows as columns. Sums-of-squares and cross-products matrices, variance-covariance matrices, and correlation matrices are all square. In addition, these three very commonly encountered matrices are symmetrical, having the same value in row 1, column 2, as in column 1, row 2, and so forth. Symmetrical matrices are mirror images of themselves about the main diagonal (the diagonal going from top left to bottom right in the matrix).

There is a more complete matrix algebra that includes nonsquare matrices as well. However, once one proceeds from the data matrix, which has as many rows as research units (subjects) and as many columns as variables, to the sum-of-squares and cross-products matrix, as illustrated in Section 1.5, most calculations illustrated in this book involve square, symmetrical matrices. A further restriction on this appendix is to limit the discussion to only those manipulations used in the fourth sections of Chapters 5 through 14. For purposes of numerical illustration, two very simple matrices, square, but not symmetrical (to eliminate any uncertainty regarding which elements are involved in calculations), will be defined as follows:
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A.1
The Trace of a Matrix

The trace of a matrix is the sum of the numbers on the diagonal that runs from the upper left to lower right. For matrix A, the trace is 16 (3 + 5 + 8); for matrix B it is 19. If the matrix is a sum-of-squares and cross-products matrix, then the trace is the sum of squares. If it is a variance-covariance matrix, the trace is the sum of variances. If it is a correlation matrix, the trace is the number of variables (each having contributed a value of 1 to the trace).

A.2
Addition or Subtraction of a Constant to a Matrix

If one has a matrix, A, and wants to add or subtract a constant, k, to the elements of the matrix, one simply adds (or subtracts) the constant to every element in the matrix.
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A.3 Multiplication or Division of a Matrix by a Constant
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Multiplication or division of a matrix by a constant is a straightforward process.

and
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Numerically, if k = 2, then
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A.4 Addition and Subtraction of Two Matrices

These procedures are straightforward, as well as useful. If matrices A and B are as defined at the beginning of this appendix, one simply performs the addition or subtraction of corresponding elements.
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and
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For the numerical example:
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Calculation of a difference between two matrices is required when, for instance, one desires a residuals matrix, the matrix obtained by subtracting a reproduced matrix from an obtained matrix (as in factor analysis, Chapter 13). Or, if the matrix that is subtracted happens to consist of columns with appropriate means of variables inserted in every slot, then the difference between it and a matrix of raw scores produces a deviation matrix.

A.5 Multiplication, Transposes, and Square Roots of Matrices

Matrix multiplication is both unreasonably complicated and undeniably useful. Note that the ijth element of the resulting matrix is a function of row i of the first matrix and column j of the second.
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Numerically,
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Regrettably, AB  ≠ BA in matrix algebra. Thus
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If another concept of matrix algebra is introduced, some useful statistical properties of matrix algebra can be shown. The transpose of a matrix is indicated by a prime (') and stands for arearrangement of the elements of the matrix such that the first row becomes the first column, the second row the second column, and so forth. Thus
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When transposition is used in conjunction with multiplication, then some advantages of matrix multiplication become clear, namely,
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The elements in the main diagonal are the sums of squares and those off the diagonal are cross products.

Had A been multiplied by itself, rather than by a transpose of itself, a different result would have been achieved.
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If AA = C, then Cl/2 = A. That is, there is a parallel in matrix algebra to squaring and taking the square root of a scalar, but it is a complicated business because of the complexity of matrix multiplication. If, however, one has a matrix C from which a square root is desired (as in canonical correlation, Chapter 6), one searches for a matrix, A, which, when multiplied by itself, produces C. If, for example,
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A.6 Matrix "Division" (Inverses and Determinants)

If you liked matrix multiplication, you'll love matrix inversion. Logically, the process is analogous to performing division for single numbers by finding the reciprocal of the number and multiplying by the reciprocal: if a-I = 1/a, then (a)(a-I) = a/a = 1. That is, the reciprocal of a scalar is a number that, when multiplied by the number itself, equals 1. Both the concepts and the notation are similar in matrix algebra, but they are complicated by the fact that a matrix is an array of numbers.

To determine if the reciprocal of a matrix has been found, one needs the matrix equivalent of the 1 as employed in the preceding paragraph. The identity matrix, I, a matrix with 1s in the main diagonal and zeros elsewhere, is such a matrix. Thus
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Matrix division, then, becomes a process of finding A-I such that
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One way of finding A-I requires a two-stage process, the first of which consists of finding the determinant of A, noted [A]. The determinant of a matrix is sometimes said to represent the generalized variance of the matrix, as most readily seen in a 2 X 2 matrix. Thus we define a new matrix as follows:
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where
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If D is a variance-covariance matrix where a and d are variances while b and e are covariances, then ad - bc represents variance minus covariance. It is this property of determinants that makes them useful for hypothesis testing (see, for example, Chapter 9, Section 9.4, where Wilks' Lambda is used in MANOVA).

Calculation of determinants becomes rapidly more complicated as the matrix gets larger. For example, in our 3 by 3 matrix,

[image: image21.png][A| =a(ei — fh) + b(fg —di) + c(dh — eg)




Should the determinant of A equal 0, then the matrix cannot be inverted because the next operation in inversion would involve division by zero. Multicollinear or singular matrices (those with variables that are linear combinations of one another, as discussed in Chapter 4) have zero determinants that prohibit inversion.

A full inversion of A is
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Please recall that because A is not a variance-covariance matrix, a negative determinant is possible, even somewhat likely. Thus, in the numerical example,
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and
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Confirm that, within rounding error, Equation A.10 is true. Once the inverse of A is found, "division" by it is accomplished whenever required by using the inverse and performing matrix multiplication.

A.7 Eigenvalues and Eigenvectors: Procedures for Consolidating Variance from a Matrix

We promised you a demonstration of computation of eigenvalues and eigenvectors for a matrix, so here it is. However, you may well find that this discussion satisfies your appetite for only a couple of hours. During that time, round up Tatsuoka (1971), get the cat off your favorite chair, and prepare for an intelligible, if somewhat lengthy, description of the same subject.

Most of the multivariate procedures rely on eigenvalues and their corresponding eigenvectors (also called characteristic roots and vectors) in one way or another because they consolidate the variance in a matrix (the eigenvalue) while providing the linear combination of variables (the eigenvector) to do it. The coefficients applied to variables to form linear combinations of variables in all the multivariate procedures are resealed elements from eigenvectors. The variance that the solution "accounts for" is associated with the eigenvalue, and is sometimes called so directly.

Calculation of eigenvalues and eigenvectors is best left up to a computer with any realistically sized matrix. For illustrative purposes, a 2 X 2 matrix will be used here. The logic of the process is also somewhat difficult, involving several of the more abstract notions and relations in matrix algebra, including the equivalence between matrices, systems of linear equations with several unknowns, and roots of polynomial equations. Solution of an eigenproblem involves solution of the following equation:
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where λ is the eigenvalue and V the eigenvector to be sought. Expanded, this equation becomes
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or
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or, by applying Equation A5,
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If one considers the matrix D, whose eigenvalues are sought, a variance- covariance matrix, one can see that a solution is desired to "capture" the variance in D while resealing the elements in D by v1 and v2 to do so.

It is obvious from Equation A.15 that a solution is always available when v1 and v2 are O. A nontrivial solution may also be available when the determinant of the leftmost matrix in Equation A.15 is 0.1 That is, if (following Equation A.11)
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[Footnote1Read Tatsuoka (1971); a matrix is said to be positive definite when all λi > 0, positive semidefinite when all λi ≥ 0, and ill-conditioned when some λi < 0.]

then there may exist values of λ and values of v1 and v2 that satisfy the equation and are not 0. However, expansion of Equation A.16 gives a polynomial equation, in λ, of degree 2:
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Solving for the eigenvalues, λ, requires solving for the roots of this polynomial. If the matrix has certain properties (see footnote 1), there will be as many positive roots to the equation as there are rows (or columns) in the matrix.

If Equation A.17 is rewritten as xλ2 + yλ + z = 0, the roots may be found by applying the following equation:
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For a numerical example, consider the following matrix.
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Applying Equation A.17, we obtain
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or
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The roots to this polynomial may be found by Equation A.18 as follows:
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and
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(The roots could also be found by factoring to get [λ - 6] [λ - 1].)

Once the roots are found, they may be used in Equation A.15 to find v1 and v2, the eigenvector. There will be one set of eigenvectors for the first root and a second set for the second root. Both solutions require solving sets of two simultaneous equations in two unknowns, to wit, for the first root, 6, and applying Equation A.15.
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or
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so that
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When v1 = 1 and v2 = 1, a solution is found.


For the second root, 1, the equations become
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so that
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When v1 = -1 and v2= 4, a solution is found. Thus the first eigenvalue is 6, with [1, 1] as a corresponding eigenvector, while the second eigenvalue is 1, with [-1,4] as a corresponding eigenvector.

Because the matrix was 2 X 2, the polynomial for eigenvalues was quadratic and there were two equations in two unknowns to solve for eigenvectors. Imagine the joys of a matrix 15 X 15, a polynomial with terms to the 15th power for the first half of the solution and 15 equations in 15 unknowns for the second half. A little more appreciation for your computer, please, next time you use it!
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