Data: Measures of Similarity
and Dissimilarity

You shall have true and correct weights and true and correct measures. so that
vou may live long in the land which the Lord vour God is giving vou
DeuteroNomy 25. 15 (New English Bible)

A very wide range of types of data and of measures of association can be
interpreted as providing information about how similar or dissimilar objects are to
each other. In turn. the idea of similarity between two objects lends itself readily to
interpretation in terms of proximity of two points. Conversely. the more dissimilar
the obijects are, the more distant the corresponding points should be. The definition
of distance measures and the relationship betweet distances and scalar products 1s
presented in Appendix A2.1. Readers unfamiliar with these notions are strongly
recommended to read this material before proceeding.

Empirical measures
In MDS, a number of different names have been given to empirical measures which
are thought of as being estimates of distance (or its antonym, proximity). In this
text the generic termr ‘dissimilarity’ will be used to cover any distance measure. and
‘similarity’ will be used to refer to a proximity measure. The empirical dissimilarity
measure between two objects j and k will be denoted: § ;. and any similarity s can
readily be converted into a dissimilarity measure by reversing the values.

A large number of (dis)similarity measures can be used in MDS. There are two
basic types:

(i) (Dis)similarity data obtained directly in the form of numerical or order
estimates (‘direct data’). Much attitudinal and survey data are of this form.

(i) (Dis)similarity data based on aggregating direct data (‘aggregate’ or
‘derived’ measures). Usually, association and correlation measures are of this form.

Each type will be considered in turn.

2.1 Direct Data

The individual data collection methods have been well discussed by Coombs (1964.
ch. 2) in terms of the amount of information which can be obtained by a given
method (its channel capacity) and the amount of implied or repeated information
(redundancy) it contains, which can be used to check the subject’s consistency. His
summary is well worth repeating:

On a priori grounds we would expect that the higher the channel capacity the
better, but this is certainly not true. A price is paid for data. not only in financial
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terms but in wear and tear on the organism at source. A method with too high a
channel capacity may, through boredom and fatigue, result in a decrease in
information transmitted, through stereotype of behavior. Furthermore, the
potential variety of messages from the organism may not be great, in which case
a more powerful method is inefficient . .. Ideally a method should be selected
which matches the information content in the source but is not such a burden as

to generate noise.
(ibid, p. 51)

To a large extent fatigue, stereotyping and inefficiency can be cut down by the
use of experimental designs, which provide methods for selecting incomplete sets of
judgments. preferably with desirable statistical properties. In Table 2.1 a brief
summary of the more commonly used methods is presented, and references which
contain information on incomplete designs are asterisked.*

2.1.1 Pair comparisons data
Collecting similarity ratings of pairs of stimuli from a set of subjects 1s a long-
established and popular pastime, especially among social scientists, but there is no
guarantee that subjects’ use of rating categories bears any resemblance to the
arithmetic properties which are often ascribed to them. In any event, researchers
should take care to ensure that a sufficiently large number of categories is provided
(Green and Rao (1970) provide further empirical support for Miller’s (1956)
‘magical number 7 + 2’ as an optimum number) and that subjects use a sufficiently
wide range of them. Pairwise ratings are especially prone to ‘response sets’ or
‘response styles’ (Cronbach 1946, Rorer 1965) involving highly skewed
distributions of ratings (Coxon and Jones 1978a, pp. 68-71, and 1979, T3.3 and
T3.4), and wide variation in the number of categories which a subject uses.
Dominance judgments of pairs of stimuli are also fairly common. In this case the
subject is presented with a pair-df objects and asked to indicate which of the two
possesses more of a given attribute (is heavier, louder, more prestigious, is
preferred. is more sexy etc). The binary data generated in this way can be used to
test the transitivity of each single subject’s choice (see Kendall 1962, p. 144 et seq.),
and are frequently turned into a rank-ordering if the choice is sufficiently
consistent.

2.1.2 Partitions (sorting} data and hierarchies data

Any method by which a set of objects is divided into mutually exclusive and
exhaustive categories constitutes a partitioning (or ‘nominal scale’). The most
commonly encountered forms of data collection which produce a partition are:

(1) Dichotomisation A set of objects is divided into rwo contrasting groups
usually in terms of whether or not the objects concerned does, or does not, possess
some specified property.

(1) Trichotomisation Usually, the trichotomy consists of those objects which
possess the property, those which do not. and those to which the property does not

apply.

*Discussion of practical and methodological issues involved in these and other methods of data
collection is contained in Shepard 1972¢ and in Coxon and Jones 1979, T2.4 and Ul .4.
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Table 2.1 Some direct methods of collecting dissimilarities data

Method

Presentation

Question Instructions

Implicd Information on
Distances

References

I PAIR
COMPARISONS

All pairs (j, k)

How dissimitar are j and k7 e.g. on a 7-
point rating scale from totally similar (1)

to totally dissimilar (7)

d, gives direct cstimate of dj;

*David 1963

*Spence and Domoney
1974

Green and Rao 1970

2 PARTITIONS
(Sorting)

Subject divides stimuli into

mutually exclusive and exhaustive

categorics or groups

T

Sort/divide stimuli into:

{a) fixed number of categories (fixed

sorting)

(b) as many or as few categories as you

wish (free sorting)

For any three stimuli,

N

dij. k) < dtj. h

il j and & are in the same
category, and s in a different
category

Miller 1969

Anglin 1970

Jones and Ashmore 1973
Coxon and Jones 1978b,
19749

3 HIERARCHIES

Subject constructs hierarchical
clustering of stimuli

iy First choose the most similar (MS)

pair. then

i) Either add new stimutus, or begin

new similar pair, then

(i) Either start new pair. or add
stimulus, or merge existing cluster

(see Coxon and Jones 1978b) 7

d, is given hy the level of
hierarchy at which j and k are
joined

Johnson 1967

Coxon and Jones 1978b.
1979

Fillenbaum and Rapoport
1971

4 RANKING

Subject i places stimuli j. A ... What is your order of d, <d, <d, <d; Coombs 1964
m in rank order in terms of given preferencessimilarity? *Durbin 1951
criterion Say:m. L k. j
5 TRIADS All triads (. AL D ol stimuldy (1) Which is the most simifar pair? dy = dyand d,, - d, *Burton and Nerlove 1976

6 TETRADS

Say: th. D

(h) Which is the most similar (MS) pair,
and the least similar (L.S) pair?

All pairs of paits ((i. Ay and (1,
m)) of stimuli

Which pair is the more simila?
Suy: (I, m) MS than (j. k)

dy = dy < dy

;:: - ;_...

*Cochran and Cox 1951
Torgerson 1958

*Cochran and Cox 1951
Torgerson 1958

*References marked with asterisk contain information on incomplete designs to reduce number ol presentations.
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(iii) Fixed sorting The objects are allocated to a pre-specified number of
categories.

(iv) Free sorting (or ‘own categories’) The objects are allocated to a set of
categories, but the number of categories is not specified, and can in principle range
between one in which all the objects are lumped together in one category and the
case where each object forms its own category (Arabie and Boorman 1973).

Such data occur in a wide variety of disciplines, and are especially prevalent in
cognitive studies. such as folk taxonomies in anthropology (Tyler 1969), psycho-
semantics (Miller 1969), subjective classification in sociology (Burton 1972, Coxon
and Jones 1978b), and in personal construct theory in psychology (Bannister and
Mair 1969). Some examples of free sorting from a number of different disciplines

are:

the co-existence of plant species (objects) within chosen field sites (categories);

the sleeping habitat (e.g. trees, which here constitute the ‘categories’) of a group
of monkeys (the ‘objects’);

the co-location of a set of artefacts (objects) within a set of neolithic graves
(categories)

the sorting of a set of words (objects) into piles (categories) in terms of their
similarity of meaning;

the co-occurrence of themes (objects) within a set of documents or sentences
(categories).

Partitions (nominal) data are usually pre-processed before being scaled. Often,
each partition is turned into a matrix of co-occurrence between the objects, where
an entry of ‘1’ in J,, means that objects j and k both occur in the same category, and
‘0’ otherwise. and the individual matrices are then summed. The analysis of
aggregate co-occurrence matrices will be discussed in 2.2.3.3. Another alternative,
when interest focuses chiefly on how similar partitions are to each other, is to
compare them two at a time, and a dissimilarity measure is then computed for each
pair. This is discussed under 2.2.3.5.

Hierarchies data, like partitions produced from the method of sorting and the
‘tree-construction’ method employed by Fillenbaum and Rapoport (1971, pp. 10—
11, 15 et seq.), can be thought of as another way of getting a full set of similarity
judgments from a subject without making the task too strenuous. The analysis is
similar to that used for comparing partitions (see Coxon and Jones 1978b. ch. 7).

2.1.3 Rankings and ratings data

Rankings correspond at the individual level to the ordinal scales of measurement.
They are one of the most popular methods of data collection in the social sciences,
yielding a considerable amount of information at relatively little cost. The basic
form (strict order ranking) has usually been obtained by presenting the subject with
a set of objects or stimuli and defining a criterion by which the subject is to make
his or her judgments. The subject is then instructed to choose the object which is
highest on the specified criterion, followed by the next highest object and so on
until a complete order is obtained. with no ties allowed. Several variants exist,
especially the weak order (where objects may be tied, or treated as equal in terms of
the criterion), and the partial order (where the subject is allowed to omit some
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objects). As we have seen, rankings may also be derived from a set of pair
comparison dominance judgments if the subject is sufficiently consistent.

Ratings are often obtained by asking the subject to assign a number to each object
in such a way that the magnitude of the number reflects her estimate of the
extent to which it possesses the attribute defined by the criterion. Common
variants of this are where the subject is asked to ‘mark each stimulus out of 100
(percentage or ‘thermometer’ rating. so named because the rating scale is
represented to the subject in the form of a thermometer scale). and the ‘graphic
scale’, where the subject positions (say) an arrow to mark her rating of the object.
and the investigator then measures the location with a ruler.

The assumption is that each rating judgment is made in relation to the other
stimuli which are presented, but in accordance with some absolute standard. This
method is known in the psychometric literature as magnitude estimation or direct
estimation (Stevens 1966). Quite often, the researcher decides to ignore the
numerical information and turn the subject’s ratings into a rank order.

Both rankings and ratings give rise to ‘rectangular’ or ‘conditional similarity’
data—that is, each subject’s rankings or ratings are not considered to be
comparable directly to those of other subjects.

2.1.4 Triadic data . :

Triadic data (where the subject selects the most similar pair out of three objects) are
very commonly collected by psychologists and others using Kelly’s ‘repertory grid
analysis’, which is also used to elicit the constructs which people use in interpreting
their social world (Kelly 1955; Bannister and Mair 1969). A common. but
dangerous practice is to turn triadic data of this sort into ‘vote frequencies’,
counting the number.of times a particular pair is judged more similar than another.
Roskam (1970) has shown that this practice can badly distort the information in
the data, and should be avoided. Another variant of triadic data occurs where the
subject is presented with three objects and then asked to select the most similar pair
and the least similar pair. In this variant. much more information is obtained
than in the first case. Suppose the subject is given the triad (4. B. C) and chooses
AC as the most similar and AB as the least similar pair. This implies that
d(A, C) < d(B, C) < d(A, B). If the subject is only asked to select the most
similar pair we should only be able to infer in this example that d(4. C) < d(A. B)
and d(4. C) < d(B, C) but we could infer nothing about the relationship between
(A. B) and (B. C) (see 6.1.3).

Although triadic data collection appears to be a powerful and efficient method,
and one which is well suited to obtaining personal constructs, it is rarely so in
practice. Even when incomplete designs are used for reducing the number of
judgments, subjects tend to find the task tedious, and their constructs often become
highly stereotyped. Moreover, when several subjects’ data are pooled, they cannot
usually be represented well by scaling models (see Coxon and Jones 1978a, p. 66
and 1979, T3.1 and T3.11).

2.1.5 General issues in direct data collection: numbers and complexity
By and large, the most frequently encountered problems in collecting and scaling
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individual sets of data centre around the number of objects and the cognitive
complexity of the data collection task. Usually a trading relationship exists
between these two characteristics: the more complex the task, the fewer the number
of objects that can be employed. Statistical designs for reducing the number of
objects to be presented to the subject are certainly useful and are often an elegant
solution. But balanced incomplete designs only exist for some types of data
collection and for certain numbers of objects, and the user must be prepared to use
more practical and rough-and-ready procedures if the research problem really
merits it. This topic is discussed further in sections 7.2.1.1 and 7.5.5.3.

The cognitive complexity of tasks poses rather different problems. Experience
shows that one’s presuppositions about the ease and speed with which a data
collection task is completed can be misleading. For instance. ranking turns out to
be a far more difficult task than rating, since constant re-ordering and comparison
is necessary to yield an ordering, whereas a rating can be made easily, and each
object can be judged separately and without repeated comparison.

In a similar way, triadic judgment seems very well suited to eliciting constructs
(or bases of judgment) and to producing fairly complex (ordered metric) data in a
simple format. And so it is, methodologically speaking—except that subjects often
find it an extremely wearisome task, and tend to ‘lock in’ on a single construct
(Coxon and Jones 1979, T2.4). By contrast, hierarchy construction—a very
complex and time-consuming task—was found to be an interesting and rewarding
task yielding rich and reliable data.

Rao and Katz (1971) provide more systematic evidence of such factors in a study
of the effectiveness of seven data collection methods. evaluating each method by a
simulation method using data from a known configuration. They find that
ordering and selection (or ‘pick k out of n’: Coombs 1964, ch. 2) methods such as
pair comparisons, triads and tetrads produce better recovery of the original
configuration than sorting methods. but that hierarchy construction is superior to
the other sorting procedures.

2.2 Aggregate Data

Most frequently, the measure of dissimilarity used as input to MDS programs is an
aggregate measure (summed over individuals, replications. times, locations etc.),
and usually 1t is also an index of association (typically a measure of correlation or
contingency).

As a methodological principle, the inspection of individual differences should
always precede aggregation. If the individuals (or other units of analysis) differ
systematically among themselves with respect to variables of interest, then such
information is lost upon aggregation. Indeed, if data are aggregated, one can never
know whether or not such differences even exist. Moreover, if significantly different
subgroups do exist then any averaged information will be an artefact and will not
reproduce the characteristics of either group accurately. There is always the danger
of ‘piecemeal distortion’ as well. If the data referring to a given unit or individual is
complex. then ‘local structure’ (interrelationships within parts of the data) can be
lost entirely when the components are aggregated. It is sometimes argued that
individual variation is simply unnecessary noise (or error) which will cancel out on
aggregation. Perhaps it will. but such a belief requires a degree of well-behavedness
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on the part of error that. however commonly assumed in social science modelling.
is scarcely realistic and should at least be investigated.

In any event, a cautious approach is to be preferred. One way is to concentrate
attention initially on examining each subject’s data structure (meaning here simply
‘set of pairwise judgments’, or ‘rankings’. or ‘triads’. or whatever). and then
compare the entire structure of different individuals before examining the
aggregate structure of the objects.

In order to simplify matters. we shall assume that the basic data matrix. X. from
which these summary measures will be computed is a rectangular matrix. with N
rows (usually representing individual subjects or units) and p columns (each
representing a separate variable or attribute) and whose element x;; gives the value
on variable j for individual i.

Level of measurement

Since each measure of association takes into account the level of measurement of
each of the variables involved. it is convenient to distinguish measures intended for
interval. ordinal and nominal data (counting dichotomous and co-occurrence
measures as special cases of nominal data). The meaning of the word "association’
changes according to the level of measurement. and so it makes sense to compare
directly only those measures which summarise data at the same level. Attention
will be restricted to symmetric measures of association. although asymmetric
measures can be represented in scaling models (see below).

R and Q analysis
Measures of association also differ as to whether they summarise the similarity
between pairs of variables (columns of the data matrix). or between pairs of
subjects (rows of the data matrix). The first type is often termed R-analysis, and the
second Q-analysis. In some cases a measure can be used in either way. but usually a
particular measure is designed for one form of analysis rather than the other.
The list of measures presented in the subsequent sections makes no claim to be
exhaustive: measures are chosen either because of their obvious suitability In
representing similarity for scaling models. or because they are in common usage
among behavioural scientists. More extended treatment of association measures is
provided in Galtung (1967, pp. 205-33), Loether and McTavish (1974, pp. 185
262), Blalock (1972, chs. 13, 15 and 18) and Wishart (1978. chs. 28 and 29).

2.2.1 |Interval level measures

The most commonly encountered measures of similarity for interval (and higher)
level data are the product moment (PM) family of coefficients, each of which can be
used in either R- or Q-analysis mode. Product moment measures are all basically
vector measures (see Appendix A2.1) where the similarity between two variables
(for R-analysis) or subjects (for Q-analysis) is represented by the combination of

(a) the length of the vectors. and
(b) the product (inner, or scalar product) of the two vectors, represented by the

size of the angle separating them.

The most familiar and frequently used product moment measures of similarity are
covariance (where the scale units of the variables enter into the assessment of
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similarity) and the Pearson product moment correlation coefficient (where the
variables are standardised to unit length, and only the angular separation is
considered). In neither case does the measure represent distance between the
variables, although it is possible to convert vector separation (product moment)
measures into distances (Appendix A2.1), and vice versa (Appendix A5.2). Vector
and distance representations of similarity are described and compared in Appendix
A2.1. where it is shown that since the correlation coefficient is a monotonic
transformation of distance. it may be used directly in the basic non-metric MDS
distance model.*

The basic matrix of scalar products (the product moment matrix) gives the
information from which variance, standard deviations, covariances and
correlations are produced. and is widely used in descriptive and multivariate
statistics. From the data matrix X, two related product matrices can be formed:

the minor product matrix. X'X, a symmetric matrix of order p, whose entries give
the scalar products (sum of squares and cross products) between the variables (R-
analysis);

the major product moment matrix. XX, a symmetric matrix of order N, or the
scalar products between the subjects (Q-analysis or profile analysis).

Both matrices have a number of important and desirable statistical properties in
common (see Green and Carroll 1976. p. 227 et seq.). In particular, they are of the
same rank. which in the MDS context means that the data can be fully represented
in a space of at most m — 1 dimensions, (where m is the smaller of N and p).

A number of variants of the basic PM matrix are in common use as measures of
similarity:
1 Deviate PM matrix
Where the original data values-fiave been ‘centred’, by having the column mean
subtracted from each variable value. thus forming the matrix X, of ‘deviate scores’:
x; = (X;; — X). This has the effect of removing the overall average effect of each
variable. (In the case of Q analysis, read ‘subject’ for ‘variable’, and ‘row’ for
‘column’ in the previous—and subsequent—sentences). The PM matrix formed
from the deviate matrix is often termed the matrix of corrected (or deviate) squares
and cross products (CSCP).

2 Dispersion ( variance-covariance ) matrix

When each entry in the deviate matrix is divided by N (or by p in Q-analysis), the
PM matrix formed from it contains variances (averaged sum of squared deviations)
in the diagonal elements. and covariances (averaged sum of corrected cross
products) in the off-diagonal elements.

In both the deviate and dispersion PM measures, the units in which the original
variables are scaled contribute directly to the overall measure of similarity (so that
measurement of height in terms of metres will produce drastically reduced
similarity values compared to measurement in centimetres).

*Vector separation and distance are not linearly related, so conversion between the two types of
measure is necessary in metric scaling, and is sometimes an option provided within computer programs,
such as INDsCAL.
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3 Correlation matrix
If each variable is standardised (i.e. the score is centred and the resuiting deviate
value is then divided by the standard deviation of the variable) to normal scores
z;; = (X; — X j)o ;. the resulting PM matrix contains ones in the diagonal
(representing the total variance). and the Pearson correlation coefficient r;;. in the
off-diagonal elements.

In calculating the correlation coefficient. each variable has been reduced to a
common unit of measurement (its standard deviation) and differences in variance
between the variables have hence been removed.

A useful comparison of these PM measures is provided by Skinner (1975). who
analyses them in terms of three independent components:

1 elevation (m;)—the average or mean effect of the variable j. so named
because when a set of variable scores is drawn as a profile. the removal of the mean
removes the elevation or average height of each variable:

2 scatter (s,)—the dispersion. measured by the standard deviation of the
variable j: and

3 shape (r;)—measured by the correlation coefficient. representing simply the

angular separation of two variables i and ;. -

In these terms. if original (‘raw’) data are converted into deviate data. information
due to elevation is eliminated. Similarly. standardising the data has the effect of
equalising the scatter of all the variables.

Each PM measure can then be broken down into its constituent components.
which are related in the following way:

Product
Moment
Measure: Components Comment
1 Original m;m; + 55 X Ty Mixes all 3 components.
(Raw scores) = Elevation + (scatter x shape) merges scatter and
shape
2 Variance- SiS; X Iy Removes elevation.
Covariance (scatter x shape) merges scatter and
shape
3 Correlation F Purely shape

Skinner's treatment is specially relevant in dealing with Q-analysis and profile
data. when the researcher wishes to compare subjects in terms of their pattern of
scores across a given number of items (test scores. semantic differential concept
ratings etc.) Several of the programs in the MDS(X) series-give the user the option
of centring and standardising the subjects’ data where this is appropriate.
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2.2.2 Ordinal measures of association

Measures of ordinal (or monotonic) association address the question: To what
extent do variables X and Y rank individuals (or whatever) in the same way?
Perfect positive association occurs where individuals are ranked in the same order
on both variables. and perfect negative association represents a total inversion in
ordering. On this, all measures of ordinal association agree. But difficulties arise in
giving meaning to intermediate degrees of association, and this is due to two

factors:

(1) whether ranks are to be considered as numerical quantities (on which
arithmetic operations may legitimately be performed) and
(ii) whether ‘the same order’ is to be interpreted in a strict or weak sense.

A number of relevant measures are summarised in Table 2.2.

Ironically. the earliest pioneering work on ordinal association (Spearman 1904,
see Kendall 1962) produced a measure which is not strictly an ordinal measure at

all!

Spearman’s rho (Table 2.2(1) )

This rank correlation coefficient is the product moment correlation between ranks,
considered as integer quantities. The measure compares two.rank orderings, and is
based upon the (squared) difference in rank positions. It thereby measures not only
the inversions which occur in two orderings but also the numerical size of the
differences. Rho is invariant under linear transformations of the data but it is not
invariant under monotone transformations, and it is therefore an interval level
measure. It varies between — 1 (when one ranking is the reverse of the other) and

+1 (perfect agreement).

X

2.2.2.1 Ordinal measures based on inversions in rankings
Usually, ordinal variables are weak orderings consisting of a fairly small number of
ordered categories. such as high. medium and low levels of motivation, or Likert’s
five response categories for attitude items (strongly agree, agree, not sure, disagree,
strongly disagree). Consequently it usually happens that a large number of subjects
share the same ordinal value. 1.e. they are ‘tied’ with respect to the variable
concerned. Different measures of ordinal association treat tied data in different
ways.

The basic idea underlying genuine measures of ordinal relationships is that of
comparing each pair of individuals on the two variables, and seeing how often they
are ranked in the same way. An example will help clarify the concepts involved.
Suppose we have data for ten individuals on the ordinal variables X and Y, (where

H. M and L stand for High. Medium and Low respectively):

Variables Variables

Individuals Y Individuals Y Y
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In comparing pairs of individuals there are five possibilities (see Wilson 1974 for an
extended exposition):

{ Concordant pairs (C) (X and Y order the individuals in the same way). Ifiis
higher (lower) than j on X, then i is higher (lower) than j on Y (for instance, as
occurs in comparing individuals 7 and 1, or 3 and 3).

> Discordant Pairs (D) (X and Y order the individuals in opposite ways). If i is
higher (lower) than j on X, then i is lower (higher) than j on Y (e.g. as occurs in
comparing 3 and 2. and 5 and 6).

3_5 Tied Pairs (X and Y share at least one tied value)

3 Tied on X (T,) (e.g. as occurs in 9 and 5, and 8 and 3)
4 Tied onY (T,) (e.g. as occurs in 8 and 4, and 2 and 5)
5 Tied onbothXand Y (T,,) (identical values) (as occurs in comparing

2 and 10).
Measures of ordinal association all have the same basic form:
(numerator) C - D
(denominator) N

where (C — D) is the difference between the number of concordant and discordant
pairs, and N is the number of pairs which are considered to be relevant to the
measure. (The denominator changes from measure to measure).

In terms of the numerator. the measures are either

weakly monotonic. allowing ties to count as concordant pairs, so that if i is higher
(lower) than j on X. then i is at least as high (low) as j on Y. or

strictly monotonic. insisting that both inequalities and ties must be matched. so
that: & -

if i is higher (lower) thdn j on X, then i must be higher (lower) than j on Y, and

if i is tied to j on X. then i must be tied to j on Y.

Goodman and Kruskal's gamma (Table 2.2(2); Goodman and Kruskal 1954)

This widely-used index measures weak monotonicity between two variables, and
was expressly designed for summarising cross-tabulations of data. It is defined as
the ratio of the difference of concordant and discordant pairs to the sum of
concordant and discordant pairs. It therefore completely ignores ties on both X
and Y and is described by Wilson (1974, p. 331) as the ‘measure of the extent to
which the data fit a 'no reversals’ (weak monotonicity) hypothesis’. In the case
of 2 x 2 tables. gamma reduces to the Q-coefficient. discussed below under

‘dichotomous measures’.

Kendall's tau measures (Table 2.2(3); Kendall 1962)

The tau measures have been described as ‘coefficients of disarray’, and are also
based on the difference of the number of concordant and discordant pairs. They
differ from gamma in that they expressly take into account all pairs, whether tied
or not. They are therefore measures of the strong monotonicity hypothesis and can
also be interpreted in terms of the number of interchanges necessary to transform
one ranking into another. Tau was defined initially in terms of comparing two rank
orderings (tau a): it was then extended to R-analysis of square cross-tabulations
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(tau b), and to cross-tabulations with unequal numbers of rows and columns (tau
). Tau measures reduce to phi (g.v. infra) for the 2 x 2 table and lie in the same
range (— 1, + 1) as rho. But there are some difficulties in interpreting tau when it is
zero, and in stating the conditions under which the maximum is attained in the case
of non-square tables.

Wilson's e: Table 2.2(4); Wilson (1974) :

This coefficient resembles the tau family in that it is a test for strict monotonicity.
but whereas the denominator of tau, (which it most closely resembles) is
(/{C + D + T,}\/{C + D + T,}) the denominator of e is the much simpler
quantity, (C + D + T, + T,). Whilst e can never be greater than tau,, its main
property is its greater sensitivity to the extent to which data cluster round the main
diagonal of a cross tabulation.

The relationship between these properly ordinal measures of association has
been investigated—appropriately enough using MDS—by Maimon (1978), who
shows the importance of the strict s weak monotonicity distinction and the
number of separate categories of the variables involved in accounting for
differences between the measures.

2.2.3 Nominal level measures ¥
A nominal scale consists simply of the division of a set of objects into a set of
mutually exclusive and exhaustive categories, technically referred to as a partition.
Three things are relevant to the analysis of such data:

(1) how many categories there are—i.e. the ‘fineness’ of the partition, or the
degree of discrimination, from the simplest dichotomy (2-state) to the multiple-
state polytomy; .

(ii) how the objects are distributed over the categories—i.e. the “shape’ of the
partition, reflecting how common or how rare the occurrence of frequency of each
category is;

(it1) what the composition of the categories is—Ii.e. the ‘content’ of the partition.
indicating which particular objects occur within a category.

Partitions are rarely scaled as they stand. More typically. they are compared two
at a time, and some measure of association is defined to summarise their
(dis)similarity. In the case of R-analysis, two nominal level cvariables will be
compared by means of a 2-way contingency table, where the rows represent the
categories of one partition (say, sex), the columns represent the categories of the
other partition (say, political affiliation), and the entries in the table consist of the
number of subjects who fall in both the row category and in the column category. A
large number of measures of association exist for assessing the similarity between
the two variables, based upon the information in such tables. Many such measures
are suitable for analysis by MDS, and are discussed below.

A particularly interesting special case occurs when the variables are dichotomies,
where the contingency table is 2 x 2. Often the ‘variables’ in this case represent the
presence or absence of some property, and the researcher is interested in the extent
to which the two properties occur together (for instance, to what extent do two
species of plant tend to grow in close proximity in a number of sites? Or, do two



Data: Measures of Similarity and Dissimilarity 23

items in an attitude test evoke the same response in a sample of subjects? Or, do
two coders agree in their identification of a theme in respondents’ answers to a
questionnaire?). Sometimes it will be sufficient simply to count how often the two
properties occur together (‘co-occurrence data’, discussed in section 2.2.3.3), but in
other cases the extent of disagreement will also be of interest, and a ‘matching
coefficient’ will be necessary to express the overall similarity of the two dichotomies
(see section 2.2.3.2).

In Q-analysis of nominal data, attention is focussed principally on comparing
the structure of the individual partitions, taken two at a time. For instance,
suppose a sample of subjects has been asked to sort a set of six objects into classes
or categories of their own choosing, and the researcher wishes to examine how
similar her subjects’ classifications are. An important step will be to form a
contingency table (as in R-analysis) but one which has the first subject’s categories
as the rows. and the second subject’s categories as columns. The entries in the table
will be the objects which are common to both the row category and the column
category.

As in R-analysis. a number of measures exist for summarising the (dis)similarity
between the two partitions. and these are discussed in section 2.2.3.4. We have
written as if each partition in the Q-analysis comes from a separate subject. There is
in fact no reason why the partitions should have been produced by individuals at
all. Equally well. the subjects could be different times, occasions, methods,
locations etc. (e.g.. how reliable is a particular subject’s classification system over a
number of retests: or in different circumstances; or with different interviewers?
How similar are census classifications of occupations in different countries, or over
a number of revisions within the same country? How similar are the psychiatric
diagnoses of a set of patients by doctors who have been trained in different
traditions?) .

2.2.3.1 Chi-square based measures

The most commonly-used family of measures compares the observed frequency of
objects in each category with that which would be expected by chance. In the case
of a cross-tabulation of two variables. the number expected by chance to be in class
i of variable X and class j of variable Y (f;;) is defined by statistical independence

fij =SSN
where f; is the total number in class i. f; is the total in class j, and N is the total

number of cases. Put in terms of proportions. independence is detfined more simply
as:

(or its equivalent P,; — P,P; = 0).

The chi-square coefficient itself is a much-used test for statistical independence.
But the value of chi-square is proportional to the number of cases, so it cannot
serve as a measure of association for comparing groups of different sizes. Several
attempts have been made to devise a measure of association based upon chi-square
which will vary between 0 and [ (the “direction’ or sign (+, — ) of a relationship is
meaningless in the case of nominal data. since the classes may be arranged in any
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order), and will not depend on the number of subjects or the number of categories.
The attempts to norm chi-square have not been entirely successful. but the
measures presented in Table 2.3 are used fairly frequently in scaling analysis.

(3* is the chi-square value: N is the total number of objects;
r is the number of rows in the 2-way table:
¢ 1is the number of columns, MIN is the smalier of r and c¢).

2.2.3.2 Measures for dichotomies
Dichotomous variables simply differentiate the presence and the absence of an
attribute. Paradoxically, a dichotomy can be considered as being a nominal.
ordinal or interval level variable:

(1) The categories of a nominal level variable can always be converted into a set
of dichotomies (thus the 4-fold religious categorisation ‘Protestant. Catholic. Jew.
other’ can be converted into three* dichotomies: Protestant/not: Catholic/not:
Jew/not.

(i1) Presence/absence can be thought of as a particularly simple ordering.

(1i1)  Since there is only a single difference (presencesabsence) the numbers (1. 0)
(or any linear transformation of them) can represent the two states quite
legitimately, and indeed it is-a common praggice in regression and related linear
models to follow this convention. calling them ‘dummy variables’.

In constructing measures of association between two dichotomous variables.
attention has been concentrated chiefly upon the question of ‘matching’. This can
best be illustrated by inspecting the 2 x 2 frequency table:

Property Y
Yes No
Property Yes a b (@ + b)
Y
No c d (c + d)

N(i=a -+ b+ ¢ +d)

(@ + c) (b + d)

Cells a and d represent positive and negative matches respectivelyv: “a” gives the
number of individuals or objects who possess both property A and property }
(the positive matches) ‘d” signifies those who possess neither Y nor } (the

negative matches).
Cells b and ¢ represent mismatches. individuals who possess one. but not the

other property.

The large number of measures of association differ in large part in terms of (i)
whether the ‘negative matches’ should enter into the assessment of similarity (i.e.
are those who do not have either attribute even relevant in comparing properties?)
and (ii) what weight should the matches and the mismatches have in defining the
degree of similarity?

*N.B. One category must be omitted in converting nominal scale to dichotomies, since the response to
the omitted category is perfectly predictable from knowing the response on the others. For instance.

knowing that someone is not Protestant, not other and not Jewish implies that the person is Catholic
since the categorisation must be exclusive and exhaustive to qualify on a nominal scale.
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Nuame Formula Maximum Zero Minimum Advantages Disadvantages Reduces to
CHI TA(f, ~ f.)P N(MIN-T) Statistical 0 Zero i case of Non normed —
SQUARE (4% o Independence independence Dependent on N
. (Sh Serves as basis for
other measures
L
PHI () XN. < (MIN-T) Sl 0 Normed, Can exceed 1 as rm Correlation
v Independent of N maximum when for 2 x 2 table
N ', Reaches maximum MIN - ]
for 2 x 2 tables
PEARSON'S 2 Depends on Sl 0 Normed, Can neither
CONTINGENCY ﬁ R v rand ¢ Independent of N exeeed, nor
COEFFICIENT 4N reach, 1 as
C maximum
TSCHUPROW'S 12 Depends on SI 0 Normed, Cannot reach | Phi
COEFFICIENT , rand ¢ . Independent on N as maximum in (in 2 x 2 casc)
T NVt = Die = 1) Reaches maximum non-square tables
(1) for square tables
CRAMER'S Unity S1 0 Normed, T.ifr = ¢in

COEFFICIENT
!

i

N(MIN — )’

Independent of N
Reaches maximum,
even for non-square
tables. Independent
of number of rows
and columns

2 x 2, and
2 x k cases

Table 2.3 Chi-square based measures of association
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The superabundance of measures of dichotomcus association is due in large part
tc their importance in numerical taxonomy. where the basic crucial operation is
often the comparison of pairs of OTUs (operational taxonomic units) or individual
organisms who share a number of attributes to a greater or lesser extent (Sokal and
Sneath 1963: Sneath and Sokal 1973) and in the social sciences. where
dichotomous variables abound, though here use has generally only been made of a
very restricted number of coefficients (but see Lazarsfeld and Henry 1968 and
Rasch 1960 for a wide variety of models based upon the covariation of
dichotomous data).

Sokal and Sneath (1963) present a particularly useful classification of measures
of (dis)similarity for dichotomous data. which in simplified form provides the basis
for Table 2.4. The measures all take the form of a ratio between the number of
‘matches’ (numerator) and the elements considered to be the relevant reference set
(the denominator). They differ in two major respects:

(i) How 'matching’ is to be defined in the numerator—in particular whether the
negative matches (cell d) are to be excluded (I). included (I1). or whether the
numerator should take into account matched and unmatched pairs (III).

(i) What weight is to be given to the relative preponderance of matched and
unmatched pairs. Here there is greater variety,_with quantities such as marginal
totals (e and h) and the sum of cross products (g) entering the definition of the
denominator. '

Brief comments on the properties of some of these measures are given below:

Measure number:

1 Represents the conditional probability that a pair of objects will both have a
randomly chosen variable, and is one of the simplest and longest used coefficients.
which excludes negative matches.

2 A curious measure which by implication treats negative matches as
generically different from positive matches.

3 The ‘simple matching coefficient’, which includes negative matches.
7 This measure was defined originally for polvtomies. and allows missing data.

8 and 9 Despite their apparently simple interpretation, both these measures
have the unfortunate property of being normed between 0 and infiniry. unlike the
other measures which all have an upper limit of unity.

14 Unlike the other measures, this bases association on the preponderance of
matches over mismatches.

15 Used extensively in social science data analysis. and based like phi on the
determinant of the table. It shares the unfortunate property with phi that if no
negative matches occur (i.e. if d = 0), then an association of zero results.

16  Phi has been extensively discussed, and is widely used as the dichotomous
equivalent of the Pearsonian PM correlation coefficient.
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2.23.3 Co-occurrence measures

Co-occurrence measures are all based upon the ‘abundance matrix’ (Kendall
1971a, p. 219) whose entries s, assess the similarity between objects j and k in
terms of the frequency with which objects j and k occur in (or are allocated to) the
same category. Miller (1969. p. 171 et seq.) has shown that the simple measure:
(N — s;). where N is the total number of subjects or partitions. obeys the axioms
of a distance metric (see A2.1.1) and is frequently used in MDS as the basic
dissimilarity measure between objects. In some applications. the user may be
advised to modify this simple measure by taking into account the size of the
category in which each pair of objects occurs. Burton (1973, and see Coxon and
Jones 1979, U2.10) has defined a family of four co-occurrence measures which
differ in this respect:

M1 Each individual co-occurrence contributes equally to the overall measure
(the basic measure).

M2 Each co-occurrence is weighted by the size of the categorv in which it
occurs (thus emphasising gross discriminations).

M3 Each co-occurrence is weighted inversely by the size of the category
(emphasizing fine discriminations). -

M4 An information theoretic measur® which also emphasises fine
discriminations, and in addition, takes into account the number of times in which a
pair of objects are sorted into different groups.

(These measures are defined in Appendix A.2). Burton (1975) examined how well
measures M1, M2 and M4 can be scaled using the basic MDS model. and the effect
which the differences between the measures have upon the structure of the final
configuration of points. As in other applications (Burton and Romney 1975:
Coxon and Jones 1979, U2.11). M2 (which emphasizes gross distinctions) gives the
best fit, but is liable to collapse points into large clusters. M4 is less readily
representable by the basic MDS model. but is probably the most satisfactory
measure for MDS analysis. due both to its greater resistance to ‘degeneracy’ (i.e.
the tendency to collapse points into clusters, ignoring significant information in
order to get a better fit) and because. like M3. it attempts to take into account both
the tendency for objects to occur together in some partitions and for them to be
separated in others. In the sense that it balances concordant and discordant pairs.
M4 resembies the ordinal measures of association.

2.2.3.4  The index of dissimilarity between distributions

Very commonly. data analysts wish to compare two distributions of a categorical
variable—such as the incidence of a number of diseases in two countries. or in two
social classes. A particularly simple measure of how (dis)similar two distributions
are is provided by the ‘index of dissimilarity’ (see Blau and Duncan 1967, p. 43 et
seq.) which is based simply on the percentage difference for each category and
illustrated below.

Each distribution is first converted into percentage form (for comparability).
Then for each category one calculates the difference (e.g.. 12.3 — 25.8 = —13.5
for category A). The absolute differences—ignoring the sign—are then added to
form the basic index (here, 60.2). Clearly, if the percentage distributions had been
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Group: Absolute
Category [ 1 9 diff. °¢ diff. (AD)

A 12.3%, 25.8% —13.5 13.5

B 5.8 13.2 —74 7.4

C 54.2 140.3 13.9 13.9

D 224 6.2 16.2 16.2

E 5.3 14.5 -9.2 9.2
Total 100.0 100.6 0.0 60.2
N = 532 821

INDEX OF DISSIMILARITY (ID) BETWEEN GrROUPs [ aND II = ¥ AD/2 = 30.1

identical the value of the index would be 0 indicating ‘zero dissimilarity’. If the
index is halved, forming the index of dissimilarity (ID), it has a particularly simple
interpretation: it represents the percentage of cases which would have to be moved
between categories in order to change one distribution into the other—a notion
encountered already in ordinal and other nominal measures of association. In this
example, 30.1 per cent of cases would need to change categories if the distributions
were to become identical. The index of dissimilarity is a distance measure: it is zero
only if the distributions are identical. it is symmetric, and for comparisons between
three distributions it obeys the triangle inequality. Moreover, its value is unaffected
by re-arrangement of the -order of the categories and is therefore appropriate to
nominal data. . '

The ID measure has been fréquently used to analyse ‘flow data’—for example,
mobility between occupational groups. migration between regions, input/output
analysis between economic sectors. volume of diplomatic correspondence between
countries. settlement of plant species in different sites. In many cases the flow is
asymmetric in the sense that not as manyv objects move from category a to category
b as do from category b to category a. A common way of analysing these data is
first to convert the raw frequency (‘turnover’) table into a row-percentaged table
(for assessing ‘outflow” movement from a given row category into the column
categories) and secondly into a column-percentaged table (for assessing ‘inflow’
into a given column category from the row categories). This is illustrated in Table
2.5 for some (fictional) migration data between four cities.

The index of dissimilarity can now be used to summarise these rather complex
flow data. In the case of outflow each pair of rows is compared by caiculating the
index (how dissimilar are cities j and k in terms of the destinations of their
inhabitants?)—in this instance. cities B and C are most alike in their pattern of
outmigration (ID = 7.8), and cities A and D are least alike (ID = 54.9). For inflow
data. each pair of columns is compared (how dissimilar are cities j and K in terms
of their in-migration or recruitment?). The values of the ID coefficients for both
outflow and inflow are given in the lowest table.

The ID coefficient is used extensively as a prelude to MDS analysis (Blau and
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I RAW AND CONDITIONAL PERCENTAGED CROSS TABULATION

{a) Raw frequencies To city
A B C D Total
A 58 22 41 19 140
From city B 30 RN 14 23 105
C 25 44 19 22 110
D 7 51 12 51 121
Total | 120 155 86 115 N = 476
(b) Row-percentaged data ( ‘outflow’)
A B C D Total
A 414 157 293 13.6 ] 100.0 per cent
B 286 362 133 219 1000
C 227 400 173 20.0 1000
D 58 421 100 42.1 | 100.0
(c}  Column-percentaged data ( ‘inflow’)
A B C D Total

T 484 142 476 166
250 245 163 200
208 284 221 191

58 329 140 443

ONw>

Total | 100.0 100.0 100.0 100.0 per cent

II INDEX OF DISSIMILARITY VALUES
Above diagonal: based on row percentages (‘outflow’)
Below diagonal: based on column percentages (‘inflow’)

A B C D

A — 28.7 307 549
B 347 — 780 270 .
C 95 334 — 242
D 385 138 340 —

Table 2.5 Calculation of index of dissimilarity

Duncan 1967, p. 67 et seq.; Macdonald 1972, p. 213 et seq.). especially for
asymmetric data of this sort.* It is further discussed in section 5.1.1.1 below.

2.2.3.5  Similarity between pairs of partitions
Although Q-analysis of sortings and partitions is a fairly recent development in
MDS analysis, it is receiving increasing attention, especially following the

*Blau and Duncan further discuss the possibility of leaving out the diagonal elements corresponding to
the ‘stayers’ in calculating an index of dissimilarity on the grounds that it is intended to assess the
dispersion or flow, not the stability. between distributions.
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important methodological work of Boorman and Arabie (Arabie and Boorman
1973). Although the literature is at a fairly technical level, the basic concepts are
surprisingly simple. The idea is to provide a measure of dissimilarity between any
two partitions by examining how many moves it will take to change one partition
into the other. As an example. take the following three partitions:

S=1(A |BDC|FE)
T =/4D | BC|FE)}
U =1{ACF| B|E|D)

(The order of the categories. and of the objects within a category, is arbitrary). It
is fully obvious that S and T are very similar. both in the number and in the
composition of their categories. whilst they both differ substantially from U. The
question is how different they are. and a quantitative answer depends entirely upon
how a ‘move’ or ‘change’ is defined. If the move consists of single elements, then
moving D out of (BDC) and into conjunction with 4 will turn S into T. However, if
we wish to preserve information about what objects are linked together in the same
category, then we shall at least need to move three pairs of elements—(BD), (CD),
and (4D)—to change S into 7. And so on: the definition of a move depends upon
how much structure one wishes to preserve intact in moving from one partition to
another. T

To show the usefulness and versatility of the Boorman-Arabie group of
measures. the pairwise (‘Pairbonds’) dissimilarity measure between S and T will
serve as an example. In all. there are 15 possible pair-linkages between the 6
elements: {4, B, C, D, E, F}. When these are enumerated and illustrated as a Venn
Diagram, (Figure 2.1a) it can be seen that S and T agree that (BC) and (EF) go
together and that a further 10 pairs do not go together. The disagreement between
S and T is limited to three pair§: the pairs (BD) and (CD) (which occur in S but not
in 7) and the pair (4D) (which occurs in T but not in S). These three pairs together
define the distance. or Pairbonds dissimilarity measure. between S and T:
doaroonas (S T) = 3. The representations of the Pairbonds measure in Figure 2.1
emphasise some important parallels with measures we have already discussed.
First. Pairbonds is clearly another matching measure between two partitions, but
is one which counts the mismarches in the pairs involved (i.e. the count (b + ¢) in
Figure 2.1¢). Secondly. the Venn Diagram makes it clear that Pairbonds is in set-
theoretic terms the svmmetric difference of the pairs involved in the partitions S
and 7. Indeed. Flament (1963: pp. 14—-17) and Restle (1959) before him. discuss
precisely this measure. prove that it is a metric. and Flament shows that it may
usefully be employed to compare the dissimilarity of two graphs such as
communication and friendship networks. and the dissimilarity of any two binary
(0. 1) relations. (In this context, Pairbonds provides a natural Q-analysis
comparison to the R-analysis measures of pairwise co-occurrence discussed in the
previous section). Thirdly the formula for the Pairbonds dissimilarity measure, like
many others discussed by Boorman. has a familiar form. akin to the cosine rule
discussed in Appendix A2.1:

d(S, T) = m(S) + m(T) — 2m(S and T)
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AB
AE
AF
B D
BC B F
B F
EF
co C F
C F
D E
D F
(a) Venn diagram of pairs
T:
Partition | AD | B8C EF Pairs in T
Y N
A A - - -
: 5 o Y 2 2
S: BDC D 8C a airs in S
N 1 10
FE - - FE N=15
(b) Intersection table of objects {c) Matching table of pairs

Figure 2.1 Pairbonds measure of dissimilarity between partitions

In the case of Pairbonds. the measure m consists simply of the number of pairs
involved:

m(S) = 4 1e. (BD). (CD). (BC). (EF)
m(T) =3 1e. (BC). (EF). (AD)

The table of the intersection between S and 7. which is similar to the contingency
table in R-analysis, is given in Figure 2.1b. It is produced simply by cross-
classifying the two partitions. and writing in the cell (i, j) the elements which are in
both category i of S and category j of 7. (Taken together. the entries in the table
incidentally comprise a partition which is ‘finer” than either S or 7. in the sense that
both S and 7 can be built up from it). There are two pairs. namely BC and FE.
which occur in the intersection table, hence

mSand 7) = 2

Thus: Pairbonds: d(S, T) = m(S) + m(T) — 2m(S and T)
=4 + 3 -2 x 2
=3 .
A further eleven measures of dissimilarity between partitions are defined by
Arabie and Boorman (1973) in a similar manner. They also investigate in a very
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instructive manucr the behaviour of these measures when submitted to MDS
analysis. We shull cxamine some of their conclusions in Chapter 4. Examples of the
use of the measures are provided in Arabie and Boorman (op. cit) and in Coxon
and Jones (1Y79),

Unfortunately, partitions do not provide any information on the relationship
between the categories, but it is a simple matter to supplement nominal
information i (he data are obtained directly from the subjects, either by asking
them to place the categories in order (thus producing a weak ordering), or to
continue merging categories in terms of their relative similarity, which produces a
hierarchical clustering of the objects (see above). Boorman and Olivier (1973) have
used the partiion measures as a basis for constructing measures of similarity
between hierarchies of this sort, and these are employed in Coxon and Jones
(1978b) to scale differences between subjective hierarchies.

2.3 Summary
Two main criteria have been used to distinguish the profusion of measures of
association appropriate for scaling analysis:

(1) direct iy derived (aggregate) measures:
(1) the level of measurement of the data or of the coefficients.

The distinction between direct and aggregate data is very.important, and the two
types of data dhifer in terms of information loss and the form of data produced.
Indirect measures are summaries calculated from original data, and are produced
by aggregatinu over one facet of the data (over subjects in the case of R-analysis,
and over objects in Q-analysis). By contrast. direct measures preserve individual
data intact and make it possible. at least in principle, to detect systematic
individual diflerences. Secondly, aggregate measures take the form of a coefficient
of (dis)similarity between each pair of objects (or subjects) and are almost without
exception “well-behaved” measures. obeying the triangle inequality. Since
aggregate mcasures produce a square symmetric matrix of (dis)similarity
coefficients. they can all be analysed using the basic MDS model. By contrast. the
properties ol dircct measures are nor known in advance. and it is quite likely that.
as they stand, some of the data may be inconsistent with any numerical
representation. On the other hand. most direct forms of data can be analysed by
specifically designed programs. which allow the researcher to examine how well
each set of individual data fits the overall configuration.

The question of the level of measurement of the data is also important, but is not
always crucial. It is of course sensible for the researcher to choose a measure of
association wiuch matches as closely as possible the level of measurement of the
variables concerned. and it is advisable to use more than one measure in order to
assess the extent to which results are dependent upon the properties of particular
measures. But one of the main uses of non-metric MDS is to see whether, whilst
making very conservative claims for the level of measurement of the data, it is
possible to find a legitimate transformation (re-scaling) which will yield a much
higher level, better behaved. set of values.

Normally, the most general rule is to preserve as much information from the
original data us possible when choosing data for input to MDS. In the case of
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direct data. it is important to choose a program which matches the type of data as
closely as possible. For aggregate measures. it is important to choose a
dis(similarity) measure whose properties are well understood. and which match the
level of measurement of the data as closelv as possible.

Tvpe of Data

Level of Direct Derived Aggregare
Measurement (Method of data collection) (Measure of (dis)similarity)
INTERVAL Ratings. flow rates. latencies Product moment measures.

(especially covariance.
correlation)

ORDERED Tetrads
METRIC
Triads
Strict Rankings Tau measures. and Wilson's ¢
ORDINAL:
Weak Rankings. with ties Gamma

HIERARCHICAL Hierarchies-(rooted trees) sBoorman-Olivier tamily of

" measures
Polytomies Partitions Chi-square based measures
tesp. Cramer's 1)
NOMINAL Co-occurrence meusures

(esp. Burton's Z)

Boorman-Arabie familyv of measures
Dichotomies -Pair comparisons Matching coefficients

Symmetric difference

Table 2.6 Types of (dis)similarity measures for scaling

APPENDIX A2.1 DISTANCE MEASURES AND SCALAR
PRODUCTS

A.2.1.1 Distance measures
The correspondence between dissimilarity and distance has been analvsed ri-
gorously in mathematics in terms of the notion of a ‘metric” or general distance
measure (of which Euclidean distance is a special case). Most measures of
association used in statistics and data analysis. for example. satisfv the requirements
of such a general distance measure. though this does not necessarily mean that they
can be directly represented in a Euclidean space. Indeed. one purpose of non-metric
MDS is to see whether we can re-scale data into a set of quantities which are capable
of such a representation.

There are two basic properties (or axioms) which a measure must satisfy to count
as a metric, and a further one is also normally required. These are listed below.
(d(A, B) should be read: the distance between points 4 and B):



Data: Measures of Similarity and Dissimilarity 35

Properties of a Distance Measure

(1) Non-negativity and equirvalence
d(4, B) 2 0 for all points 4, B
and
d(A, B) = 0 if and only if 4 coincides with B

(1) Symmetry
d(A. B) = d(B, A) for all points 4, B
(1) Triangle inequality
d(A. C) < d(A, B) + d(B. C) for all points 4, B, C

metric’: one that satisfies all three axioms is referred to as a ‘metric’. Several
comments on these properties are appropriate.

Non-negativity might seem to exclude covariances, correlations etc.. which can
take on negative values. This difficuity can be overcome fairly easily.

Symmerry might seem to exciude asymmetric dependence measures. such as
regression coefficients. although asymmetry can be represented in a spatial manner
fsee 3.1.1.1).

Triangle inequality 1s the most restrictive axiom. and can best be illustrated by
the fact that in Euclidean space a point B must either lie on the line AC, in which case
d(A.C) = d(A, B) + d(B, C), orelse it must lie off the line AC, in which case the sum:
d(A. B) = d(B, C) must exceed d(A. C).

The Triangle Inequality Axiom
(a) Triangle equaliry (B lies on line AC)
d(A. C) = d(A, B) + d(B. C)

2

4 B C

(b)  Triangle strict inequality (B lies off line AC)
did. C) < d(A.B) + d(B.C) p

A C

This axiom clearly excludes the possibility that
d(A. C) > d(A. B) + d(B. C)

A large number of measures used in empirical research satisfv these three axioms
but 1t 1s by no means clear simply by inspection whether they do or do not.

A2.1.1.1 Euclidean distance
The most common way of representing dissimilarity in MDS is in terms of
Euclidean distance. which involves a surprisingly restrictive set of further
assumptions. The user should be aware of what these are. The mathematical
definition of Euclidean distance is as follows:
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djk = \/{Z (Xja - Xka)z}

where x;, refers to the co-ordinate of point j on dimension a.

The formal and substantive assumptions of Euclidean distance have been
investigated from a measurement theory viewpoint by Beals et al. (1968). Four
definitional characteristics of Euclidean distance are of special relevance in
elucidating the assumptions implicit in the use of the distance model (Tversky and
Krantz 1970, p. 4):

(i) Decomposability The distance between the objects can be decomposed
into a contribution from each of the dimensions (a) of the space.
(i1) Intra-dimensional subtractivity (x;, — X;,)
Each contribution to the distance between two points is composed of the difference
in scale values within each dimension.
(i11) Inter-dimensional additivity (the summation over a)
The distance measure combines these differences additively from each dimension.
(iv) Metric (the squaring of the differences)

All the differences in (i1) are transformed by the same power-function.

As the authors show, it is possible to state the empirical conditions which data
must satisfy if at least the first three of these characteristics are to be justifiable.
Users should note that there is no guarantee that a given set of ordinal similarity
data can be embedded in a metric space and that the metric and dimensional
assumptions of the distance model are quite distinct: it is quite possible that some
data will satisfy the latter but not the former set of assumptions.

A2.1.1.2 Minkowski metrics
The Euclidean metric is a special case of a more general familv of distance
measures, referred to under as Minkowski r (or L, or power) metrics of the form:

dp = "//Z | Xja = Xl
\/ a=1

Each value of r (=1) substituted in this formula defines a distinct meiric, all of
which obey the triangle inequality. Clearly. if r = 2 then the Euclidean metric
results. Other values used in scaling include the citv-block (or ‘Manhattan” or "taxi-
cab’) metric (where r = 1), and the dominance metric (where r = ). The
properties of these metrics and their applications in MDS are discussed under
5.3.3.2. Carroll and Wish (1974a, p. 412 et seq.) give an extended treatment and
also consider the case where r < 1, and other metric families such as Riemannian
metrics of constant curvature which have also been used in MDS.

A.2.1.2 Distance and vector representation of data
Consider the following data matrix:

5 1]
X =|3 2}
1 4
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Distance between variables 1 and 2

d(1,2) = N (5 =3)2 +(1 = 2)2

=J@+1)
= 2.236
Matrix of distances
Variable 1 2
1 0 45 /25
2 5 .0 W
3 W25 8 0

Figure A2.1 Euclidean distances between three variables

The information in this matrix can be thought of either as giving the co-ordinates
for locating two (column) elements in three (row) dimensional space, or for
locating three (row) elements in two (column) dimensional space. For simplicity of
exposition we shall assume that it locates three variables describing two subjects,
and that we wish to assess the similarity of the variables (R-analysis).

If a distance measure of similarity is required, then this can be calculated using
the Euclidean distance formula illustrated in Figure A2.1.

Two operations often performed on raw data scores are:

(i) centring—creating the ‘deviate score’ by removing the overall effect of a
variable by subtracting the mean.

(il) standardising—creating the ‘normal score” by dividing the deviate score by
the standard deviation of the variable, thus reducing all variables to a common unit
of measurement.

Centring the variables has the geometric effect of removing the origin of the space
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I
At 3

Figure A2.2 Vector representation of similarity

(0, 0) to the centroid (centre of gravity) of the points defined by the means of the
variables, i.e. to (3, 2) in this case, but.it does not affect the distances in any way. By
contrast. standardising does affect distances since the axes are now differentially
stretched to a common unit.

The vector representation of the same data is given in Figure A2.2. The scalar
products measure of similarity between the variables is produced by forming the
(major) product moment matrix, A = XX', which in this case is:

5 1 5 3 1 26 17 9

3 2 1 2 4] =117 13 11

1 4 9 11 17
X X' = A

This is often referred to as the matrix of ‘crude sums of squares and cross products’
(CSSCP) in the multivariate analysis literature. The minor product matrix X'X (of
order two) provides the scalar products between the two individuals, aggregated
over the variables). The entries in the product moment matrix are readily
interpretable. The diagonal entry, g,,, gives the squared length of the vector draw
from the origin to the point i (call it I?). The symmetric off-diagonal elements a;,
give the scalar product between vector i and j, which is related to the angular
separation between the vectors. Explicitly it is the product of the length of each
vector and of the cosine of the angle separating them: (see van der Geer 1971,
pp. 19-21)

e.g. in the case of variables 1 and 2:

a;, = +/26./13 cos (22°23') ~ (5.100)(3.606)(0.924)
17.000
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(Xy,%2) New origin 2
(X4.X3)

Old origin

Figure A2.3 Vector representation from centroid origin

Although centring has no effect upon distances, it-dramatically alters the
measure of similaritv based upon scalar products, since the lengths of the vectors
and their angular separation is now assessed from a different origin. The effect of
centring is illustrated in Figure A2.3. The product moment matrix B formed from
the centred deviate matrix X, is as follows:

W G| Laj e

W O
|
Wi b

Gids bI

R
B=XX,=. 0 -
:

5.78 044 -6.22
= 0.44 0.11 -0.56
—-6.22 -0.56 6.78

Notice that the scalar products between | and 3 and between 2 and 3 are now
negative. Obviously, centring variables does not leave vector separation measures
unchanged. Consequently when vector or factor model solutions are presented in
MDS the origin of the configuration is fixed. and may not be relocated at will. By
contrast. the origin in Euclidean distance model configurations is arbitrary and
may be moved.

There are two especially useful variants of the relation: a;; = [l; cos 0;;, which
apply when the variables are centred. and normalised.

(i) If the XX, matrix is multiplied throughout by the constant 1/N (where N is
the number of individuals), the resulting matrix consists of the dispersion matrix,
2. which features centrally in multivariate analysis. whose diagonal elements ¢;; are
the variances. and whose off-diagonal elements ¢,; are the covariances between the
variables i and j. In this case. the relation is:

a; = 0,0, €08 8;; = a;; (covariance).
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Again, both the length of the variables (in this case, their dispersion) and their
angular separation contribute to the covariance measure, which is therefore
sensitive to the scaling (measurement units) of the original variables.

(i1) If in addition the variables are standardised (to zero mean and unit
variance z;; = (x;; — X;)ig;). then the dispersions all become unit length. which is
tantamount to saying that the original variable scaling units are arbitrary. Then
the form of the relation becomes especially simple. Since ¢; = ¢; = 1 for
standardised variables. then it reduces to:

a; = (1)(1) cos 6;; = cos §;; = r; (correlation).

Hence Pearson’s correlation coefficient preserves only the angular separation in
normalised axes (shrunk or expanded in order to equalise dispersions) between the
variables, and the scale units of the original values in no way contribute to the
measure of similarity.

A.2.1.3 Coverting scalar products into distances
Conversion of scalar products into Euclidean distances involves a simple
appllcatlon of the cosine rule, which states that in a non-right-angled triangle.

5

- 2 + b2 — 2abcos 6.

Thinking of CB and CA as vectors, 6 as the angle separating them, and AB as the
distance d(A4, B) correspondmg to the angular separation. then the rule may be
rewritten as:

dl4,B) =18 + I — 2]l cos@,

=12 + [} — 2 x (scalar product between g and b)
= a; + a; — 2a; (in terms of the product moment matrix of scalar
products)

For example, in Figure A2.2,

d}, = 26 + 13 — (2)(17)
=39 -34=5
dy, = /5. which is the quantity calculated in Figure A2.1.

A special application of the cosine rule. and remembering that standardised
variables are unit length, shows that correlations are (inversely) monotonic with
distances.

The cosine rule:

di, =1} + I — 21l cos 6,

Since r,; = cos 6,

then di =2 — 2, i

and d; = /2 = 2r,) = J201 — r).
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Clearly, the relationship between distance and correlation is a decreasing one (in
effect, I — r,; forms the dissimilarity coefficient), and it is non-linear (because of the
square root). But there is a monotonic relationship between distance and
correlation, including negative correlation values.

The conversion of Euclidean distances into scalar product form is a slightly more
complicated matter. and is taken up in Appendix A5.2.

APPENDIX A2.2 CO-OCCURRENCE MEASURES OF
SIMILARITY

An individual partition of a set of N objects or elements can be represented as a
square symmetric (0, 1) matrix S of order N. where §;; = 1 if objects i and j occur in
the same category of the partition. and S;; = 0 otherwise.

Thus. the partition | = {3.1{4.2.5] can be represented by the co-occurrence or
‘incidence’ matrix:

1 01 0 O]
01 0 1 1
S" =11 01 00
01 0 1 1
01 0 1 1

Clearly. co-occurrence is a metric. obeying the triangle inequality since i cannot
occur with j, and j occur with k without i also occurring with k.

When there is a set of r partitions. the S matrices are simply added together to
form the aggregate co-occurrence matrix. It also represents a metric, since the sum
of metrics is a metric. The four mieasures referred to in the text (2.2.3.3) and defined
in Burton (1975) differ basically in how the size of the category is taken into
account before the individual matrices are aggregated.

M1 (the basic measure, cf. Miller 1969. which is called F in Burton 1975)
Each co-occurrence contributes equally, so the aggregate matrix S is the simple
sum of the (1. 0) individual matrices.

M2 (called G in Burton 1975)

The entries in the individual co-occurrence matrix S’ are the number of elements in
the category from which the pair is drawn. In this case. the individual co-
occurrence matrix corresponding to partition [ would be:

[> 0 2 0 0
030 3 3
S"— 20200
0303 3
030 3 3

(N.B. diagonal elements are _ignored)

Hence. the larger the category in which a pair of objects occur, the higher their
similarity is considered to be.
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M3 The entries in Y’ are the reciprocal of the number of elements in the category
from which the pair is drawn. In this case,

(=) o 4 0 o0
0 (=) 0 & &
3 0 (=) 0 O
0 3 0 (=) 4
0 5 0§ (=)

Clearly, this measure deflates similarity by the size of category, on the reasoning
that the more unusual co-occurrences, or the more fine discriminations denote
greater similarity.

M4 (called Z in Burton 1975)

This information-theoretic measure, which is akin to M3 in emphasising the
similarity of pairs from small categories. is based upon the “surprisal value’ of each
category. This is defined in terms of

(1) the probability that two objects j and k will be found in the same category. a.

P = n,(m, — 1)n

(where n, is the number of objects in category a. and n is the total number of pairs)
and : ’
(1) the probability that j and k will be found in.

Q(l) =1-Y p(l)
The contribution which each pair of objects (j. k) makes is defined as its surprisal
value. o

—log, (p}') if j and k are in the same group
and —log, (Q"")if j and k are in different groups

Since surprisal is negatively related to the size of the group. M4 also emphasizes
finer discriminations, but (unlike M3) makes explicit allowance for pairs occurring
in different categories. In the present case. since the probability of two objects
being in the same category is 0.1 for category 1. and 0.3 for category 2. and the
probability for being in different categories is 0.6. the matrix of similarity (surprisal
values) 1s:

— —

— 0.74 332 074 0.74

074 — 0.74 174 1.74
332 074 — 074 074
0.74 174 074 — 1.74

1074 1.74 0.74 1.74 — |

Diagonal values are usually defined by convention to be slightly larger than the
maximum element, to preserve the positivity axiom of a metric.



