Scaling: The Basic Non-Metric
Distance Model

The journey of a thousand miles begins with a single step.
Lao Tze

3.1 Ordinal Rescaling: Introduction
In using MDS. the user must pay attention to three things:

the data. which give empirical information on how the objects or stimuli relate to

each other:
the model. which provides a set of assumptions in terms of which the data will be

interpreted: and

the transformation. which is the rescaling which may legitimately be performed
on the data to bring them into closer conformity to the model. This is usually
referred to as the ‘level of measurement’ of the data. .

3

The data N
In the basic MDS model (frequently called ‘smallest space analysis’ or ‘non-metric

distance scaling’) the data take the form of a square. symmetric 2-way table. whose
entries indicate how similar or how dissimilar any two points are. (To avoid
unnecessary repetition we shall assume that the data are dissimilarities. uniess
otherwise indicated). Bv convention. the entry in the ith row and jth column of the
table is denoted J,,. and gives the value of the dissimilarity measure between object
i and object j. Because the data are symmetric (J;; = J;;) and each object Is
considered to be identical to itself. the diagonal entries are ignored. and only one
half of the matrix. usually the triangle below the diagonal. is presented (see Table
I.1 as an example).

The model
The model used in basic MDS is the simple Euclidean distance model described in

section 2.1. In terms of this model. the data §; will be interpreted as being
-distance-like ; not as actual distances. but as approximate or distorted estimates of
distance. The aim of the MDS analysis is to turn such data into a set of genuine
Euclidean distances. The solution (also called the ‘final configuration’) consists of
an arrangement of points in a small number of dimensions, located so that the
distance between the points matches the dissimilarities between the objects as
closely as possible.

43
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Column: (1) (2) (3) @ ® (6)
DATA | DISTANCES
! : (Est.) |
No. Pair Data © Rank = Real* - Scaled**
(7)) ou.jy | opGy o dGg) o du) |
1 (8.2) 0932 . 1| 5830 - 2411
2 (8. ) 0901 | 2 5.656 2270
3 (6. 1) 0899 3 5.385 2.206
4 (7.6) | 0833 4 5.099 2.206
5 (7.3) | 0.753} e 5.000 2145
6 6.2y | 0752 . T 5.000 | 2.118
7 (7.2 07300 | 5 _ 4.123 1.827
8 (8.7) 0730 = 4123 1.739
9 . 3.1 0.712} g 4.000 1.632
10 ¢ (83 , 07125 = 4.000 1.558
11| (8.4 0.634 11 3.60% 1.557
12 (6. 4) 0.541) 3.162 1.429
13 (5.2) 0541 7 | 12= . 3162 1377 |
14 (3.2 | 0341 . . 7 3162 1.367 |
15 (6. 3) 05301 © o _ - 3.000 1.320
16 (7.1) 053 ¢ 7 3000 ¢+ 1.308
17 (7. 4) 0.5217 | 2828 1 1264
18 (5.3) 0.521( 5 _ 2828 1221
19 (8. 3) 0.521 [ T 2828 ¢ 1148
20 (5.1) . 0.521 | . 2828 1.130
21 (4.3) | 0364 | 223 1 0972
22 | (1.5) 0.364 | | 2236 1 0941
23 8.6) 0364 Al - 2236 0.895
24 6.3 | 0364 1% 223 | 0.882
25 (4.2 0.364 | | . 223 0866
26 (4. 1) 0.364) | S 2236 0 0779
27 2.1 0211 27 1414 ©  0.586 |
28 (5.4 | 0007 | 28 ~ 1000 1 0532

*Strong monotonicity, secondary approach to ties
**Weak monotonicity. primary approach to ties

Table 3.1 Ordinal rescaling of the data from Table 1.1

The transformation
The ordinal or monotonic* transformation used in non-metric MDS assumes that
only the rank order of the entries in the data matrix contains significant
information. Consequently the distances of the solution should. as far as possible,
be in the same rank order as the original data. For this reason, non-metric MDS is
sometimes referred to as ‘ordinal rescaling analysis’ (Sibson 1972).

The purpose of the basic non-metric MDS procedure, then, is to find a configuration
of points whose distances reflect as closely as possible the rank order of the data. This

*A monotone (or monotonic) increasing quantity is one which never decreases. (a monotone decreasing
quantity is one which never increases). Hence. a monotonic transformation of data preserves their
order, and in this text the terms ‘monotonic’ and ‘ordinal’ are used interchangeably.

-
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is done by trying to find an ordinal rescaling of the data which transforms them
into Euclidean distances.*

3.1.1 Perfect ordinal rescaling

To illustrate ordinal rescaling, let us return to the data originally presented in
Table 1.1. First. the 28 entries of the data matrix are sorted into order. Column 2 of
Table 3.1 gives the (column, row) location of each entry in the matrix, and column
3 gives the actual dissimilarity value (the data). Thus the highest dissimilarity,
between object 8 (receiving) and object 2 (rape), has a value of 0.932 and the lowest
dissimilarity, between object 5 (libel) and object 4 (perjury), has a value of 0.007.
The rank number of each data entry is given in column 4. Note that there is a
goodly number of tied data values. including six with the same value of 0.364. In
all. only 14 distinct values appear in the data.

In column 3. the original data have been ordinally rescaled into a set of
Euclidean distances which correspond to the two-dimensional configuration
presented in Figure 3.1. (How the ordinal rescaling was obtained and how the
configuration was produced need not concern us at this point. It is only important
to see that a configuration has been obtained whose distances are a perfect
rescaling of the original data).

The Shepard diagram

It is always instructive to look at the shape of the ordinal transformatlon function.
This is done by producing a ‘Shepard diagram’ (named after Shepard’s seminal
paper of 1962), where the data dissimilarities and the distances of the solution are
first plotted against each other. and then the ordinal transformation is depicted by
joining the points in an upward direction. as is done i Figure 3.2. Since we are
dealing with interpoint distances rather than co-ordinates. there will be p(p — 1)/2
values contained in the Shepard-diagram: with eight points, as here, there are 28
such values. For instance:-the bottom left hand point is the one corresponding to
{5. 4), whose dissimilarity value is 0.007, and the corresponding distance value is
1.000. The next point up corresponds to (2, 1). with §,; = 0.211 and d,, = 1.414,
and there then follows a point representing the six entries whose data value is 0.364
and whose distance value is 2.236. In all. there are clearly 14 distinct data and
distance values. When the points are joined. it can be seen that the transformation
function between the data dissimilarities and the solution distances is perfectly
monotone, ie. always moves upwards and to the right. (If the data were
similarities. the direction of transformation function would be downward and to
the right).

Strong and weak monotonicity
This particular rescaling function illustrates a strong (or strict) monotonic
relationship between the data and the distances, defined in the following way:

Strong monotonicity: Whenever §;; < J,, then d;; < dy

*The exposition of the basic MDS model in the following sections is primarily based upon the Shepard
(1962) and Kruskal (1964a. b) procedure for non-metric MDS, suppiemented by the work of Guttman
(1968) and Lingoes and Roskam (1973).
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Figure 3.1 Two-dimensional configuration generating distances of Table 3.1

That is. if one datum is less than another then the corresponding distances must be
in the same order.

A less restrictive requirement often encountered in scaling is that a weak
monotonic relationship holds between data and distances. Weak monotonicity
only requires that no inversions in order should occur between the data and
distance. That is, that if 6;; < §,, then it should never be the case that di; > dy.
However, in the case of weak monotonicity note that d;; may equal d,,. even v&hen
0ij < O

Weak monotonicity: Whenever 4, < §,, then d; < d,

In this case, the transformation function moves upward (even verticallv upward)
but it may never move downwards. Figure 3.6 gives an example of a weak
monotonic transformation of the same data.

3.1.2 An illustrative example: Scottish mileages

People often need convincing that it is really possible to derive distance
information purely from the rank order of pairwise dissimilarities. A further. less
artificial, example should persuade doubters. (In addition. the following example
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Figure 3.2 Sgpng monotone rescaling of data

involves a monotonic transformation with a regular or smooth shape, and serves to
introduce some further ideas of ‘badness of fit’).

Sixteen towns on the mainiand of Scotland were chosen. their distances were
measured on a map with a ruler, and a small degree of error (inaccuracy) was
added to the distances. The 120 distances were then reduced to rank order. and the
rank numbers used as data. These are presented in the bottom left hand corner of
Figure 3.3. (There are 92 distinct values. so the number of tied data values is much
less than in the previous example).

These data were submitted to MiNissA. the program in the MDS(X) series
implementing the basic model. and the configuration presented in Figure 3.3 was
produced. (The map outline is drawn in freehand. and the dimensions were rotated
counterclockwise through 90° to give the northern orientation to the
configuration.) Obviously. it is an excellent recovery of the original configuration
of 16 towns. The corresponding Shepard diagram is presented in Figure 3.4. In this
example. the monotonic ‘line’ has not been drawn in, because the smooth. regular
shape of the relationship is clear simply by looking at the pattern of the points. The
relationship between ranks and distances is linear in the main range (say between
0.5 and 2.00 along the distance axis), but over the entire range the relationship is
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Figure 3.3 Data (rank of mileages) and solution of Scottish distances.
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Figure 3.4 Shepard diagram: Scottish distances

close to an S-shaped (logistic) curve. where the initial smallest values increase
slowly. and the final largest values decrease slowly.

But notice that a few rank mieages are not well fit—if a line were to be drawn
through all points. it would occasionally have to move downwards and to the right
to accommodate all the points. contrary to the requirement of monotonicity. True.
there are very few such instances. but they are sufficient to show that. even in the
case of slightly imperfect error-prone data. it will not always be possible to define a
perfect monotonic rescaling. Instead we shall have to talk about fitting or
estimating a monotonic ‘line’. about errors (or departures from a monotonic
relationship). and these will be used to define stress as an overall measure of fit.

3.2 Monotone Regression: The basic ideas

In using non-metric MDS a perfect ordinal rescaling of the data into distances is
usually not possible. What is sought is as good a rescaling as can be achieved.
Later. in section 3.4. it will be seen that this involves finding a series of
configurations in which the interpoint distances come more and more closely into
conformity with the data. For the present it simplifies matters to concentrate upon
how well one particular configuration (or. strictly. its distances) matches the data.
To do so it is crucial to grasp the important. but basically simple. ideas involved in
what is termed ‘monotonic (or ordinal. or isotonic) regression’. To illustrate the
main ideas. we return to the previous example of rescaling the data of Table 3.1.
which is illustrated in Figures 3.1 and 3.2.
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Figure 2.5 /mperfect monotone rescaling of data

Suppose points.1. 4 and 6 in the final configuration of this earlier example were
moved slightly: the changed configuration would not fit the data so well. and when
the Shepard diagram was constructed it would have the characteristic form of
Figure 3.5. The distances between the objects (4. 1). (8. 4). (6. 2) and (6. 1) have
now changed. and in such a way that the data and the distances can no longer be
put into a perfect monotone relationship. For instance. the data indicate that
d,; < O4s. whereas now d,,; > dq-. This inversion in ordering means that It 1s
impossible to construct a monotone ‘line” through all the (black) points on the
Shepard diagram. We are in a quandary: we must either follow the counsel of
perfection. and declare that properly speaking an ordinal rescaling is not possible.
or recognise the fallibility of the data. and construct as good an ordinal rescaling as
possible. In actual fact. it is the second option which is usually followed. But to do
so. we shall need to know how to construct "as good a rescaling as possible’. and we
shall need a precise definition of what is meant by the “fallibility” of the data.

This can be accomplished by means of a process of monotone regression. This
involves the calculation of a new set of "distances’. often called "pseudo-distances’.
(since they are not actual distances corresponding to any real configuration nor.
indeed. need they obey the triangle inequality). or “fitted distances’ or "disparities .
These three terms are used interchangeably and are denoted: dj;. At this point. it is
not important to know how they are calculated—that can wait until section 3.5.2.
But it is important to know what the properties are and how they serve to measure
the extent to which a given configuration fits the data.
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The fitting values are ratio-level quantities defined as ‘distances’ which would
preserte perfect monotonicity with the data. Once calculated for each pair of points
(j. k). the discrepancy between the actual distance (d;) and that disparity (dj.’k),
which would give a perfect monotonic solution (i.e..d; — d%), serves as a basis for
measuring how far the distances of the configuration depart from those ‘pseudo-
distances” necessary to keep perfect order with the data. Note that these differences
between the distances and the fitting values are calculated along the distance axis.
The reason for this is that we have committed ourselves to regarding the data as
ordinal and any arithmetic operations involving them (in this case. subtraction) are
illegitimate. In Figure 3.5 the disparities are denoted by white circles. in the cases
where thev differ from the actual distances.

3.2.1 Two types of fitting value

In non-metric MDS. two types of fitting quantities (disparities) are frequently
used—one of which measures the deviation of the distances of the configuration
from weak monotonicity. and the other which measures deviation from strongy
monotonicity. Both of these tvpes are used in many MDS(X) programs, and it is
important to see how they differ. and that strong monotonicity is usually bound to
produce worse fit than weak monotonicity.

(i) Weak monotonicity (Kruskal 1964a)
In this case the pseudo-distances which are fitted in the monotone regression are
denoted ., ("d-hat’), and are required to be weakly monotone with the data:

Weak mon: Whenever o,; < d;, then d;; < d,,

That is. weak monotonicity allows unequal data to be fitted by equal disparities.
When this happens it shows up on a Shepard diagram in the form of vertical lines in
the monotone transformation function. In addition the disparity values. c[jk have
the useful property of being as close as possible to the corresponding distances.
This means that. over all the points of the configuration. the sum of the squared
differences between the distances and the corresponding disparities 1s as small as
possible. 1.e.
Y (dy — dy)* = minimum

ali paus

ij.ky
In brief. Kruskal's fitting quantities. also referred to as BFMF (best-fitting
monotone function estimates). are required to be both weakly monotone with the
data and a least-squares fit to the actual distances.

(i1)  Strong monotoniciry (Guttman 1968)

In this case the pseudo-distances fitted in monotone regression are denoted d% (‘d-
star’). and are required to be strongly monotone with the data. They are often
referred to as ‘rank images” estimates:

Strong mon: Whenever o;; < o, then d¥ < df
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It should be noted that strong monotonicity does not allow unequal data to be
fitted by equal disparities. In this case no vertical segments will appear on the
Shepard diagram. Consequently. if the criterion of strong monotonicity is chosen.
more discrepancies will occur between the data and the distances of the solution
than if weak monotonicity is chosen. Moreover. it is not required that the d*
values be as close as possible to the actual distances. so the difference
(d; — d%) will usually be larger than (d; - d‘jk).

As a result of these differences in definition. any overall measure of badness-of-fit
between a particular configuration and a set of data is bound to be higher (ie.
worse-fit) when measured in terms of departure from Guttman's strong
monotonicity requirement than when measured from Kruskal's weak
monotonicity requirement.

In using MDS programs it is important to pay attention to which form of
monotonic regression is being used. A full technical comparison of the differences
and similarities is contained in Lingoes and Roskam (1973) and in Young (1973).%

3.2.2 Ties in the data
In a set of research data. the values will not normally be distinct: at least some
values will be the same. The question arises: should equal dissimilarities be fit by
equal disparities? ' *

Two main answers have been given to the question. referred to as the "primary’
and the ‘secondary’ approach to ties:

Primary approach

Primary. approach-to ties: If §,; = 9,, then d{; may. or may not. equal dj,

This indulgent approach treats ties as indeterminate and allows fitting values either
to preserve the equality or replace it by an inequality. In fact, the tie will be broken
if in so doing the goodness of fit is improved. In a Shepard diagram, the primary
approach to ties shows up characteristically in the form of horizontal straight lines
in the monotone function (since identical dissimilarity values are allowed to be
represented by different distance values). Figure 3.6 presents a perfect weak
monotonic rescaling of the data of Table 3.1, using the primary approach to ties.
Compare this with the strong monotonic rescaling in Figure 3.2. The configuration
recovered by the two scalings is however. virtually identical.

Secondary approach

Secondary approach to ties: Whenever J;; = 4, then d; = dy,

On the other hand, in the secondary approach. ties in the data are required to be
retained in the fitting values. Consequently. if the actual distances do not preserve

+Young shows that Kruskal's weak monotone and Guttman’s rank image transformations mark the
extremes of a continuum of a bounded. one-parameter, family of possible monotonic transformations.
Although other possible variants have some desirable properties, they are not used extensively in MDS
programs and they all seem able to recover metric information with about equal proficiency.
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Figure 3.6 Weak monotone rescaling of data

every equality in the data. each infraction will be counted as a deviation from
monotonicity. In effect. in the case of the secondary approach tied data are treated
as being genuinely equiyalent‘.l(Note from Table 3.1 that Figure 3.2 is a perfect
strong rescaling. using the secondary approach to ties.)

In general. the primary approach to ties should be used in preference to the
secondary approach. especially if there is a fairly large number of distinct values in
the data. Kendall (1971b. p. 313 et seq.) shows that adoption of the secondary
approach can badly misrepresent the structure present. However. if there is only a
small number of distinct dissimilarity values (as. for instance. when the data are
ratings of similarity from a scale containing a very limited number of ordered
categories) then allowing the program the additional indulgence of fitting
equivalent category values by disparities in any order may destroy virtually all
information.

Generally. MDS programs use the primary approach to tied data in obtaining a
solution and. in the MDS(X) series, MINISSA(N ), among others. offers the user the
choice of primary or secondary approach.

The decision as to what values count as the same is far from trivial. Often data
input will consist of numerical association coefficients. such as correlations. which
have been calculated to several decimal places of accuracy. So long as two values
differ—even if only in the final place—a non-metric program will treat them as
distinct and attempt to find corresponding distance values which are also distinct.
Such spurious exactness can be avoided by including coefficient values only up to
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the desired level of exactness (e.g. by rewriting an INPUT FORMAT of: 10F8.5 as. say.
10(F5.2. 3X) in order to keep only two significant decimal places). Another
alternative is to employ the parameter EPSILON in MINISSA(N) or the parameters
TIEUP and/or TIEDOWN 1in SSA (M ): in either case values will be treated as identical if
they differ by less than a specified amount (see also 6.1.1).

3.2.3 Preservation of order information

Taken together, the monotonicity criterion (weak rs strong) and the approach to
ties (primary vs secondary) produce somewhat different effects on the preservation
of ordinal information (order inequalities and equal values) in the data. and the
monotonic function has a slightly different form in each of the four cases. These
alternatives are presented as a typology in Table 3.2.

Type 1: weak monotonicity

This is the most commoniy employved option. and the most indulgent one. since it
allows maximum flexibility in rescaling the data ordinally. At best it can recover
structure which is obscured by a good deal of error (cf. Kendall 1971b): at worst it
can destroy virtually all significant information if it ties data which ought not to be
equal and unties data which ought to be ordered.

Characteristically. the monotone regression fugction in this case is very ‘steppy .
with a number of both vertical segments (due to weak monotonicity allowing
different data values to have the identical fitting value). and horizontal segments
(due to the primary approach allowing identical data values to be fit by different
difterences). See Figure 3.6 for an example of this. although the only effect of weak
monotonicity occurs in the single small vertical segment in the top right-hand
corner. On the other hand. there are a number of obvious instances of the effect of
primary ties. (horizontal segments). In general. type I monotone regression
functions are ‘upward non-decreasing’. and often include a number of right-angle
steps.

1vpe 11: semi-weak monotonicity

No horizontal segments appear on the function. since they are excluded by the
secondary approach to ties. But vertical segments will usually occur. It is a
combination which should be used when the user ascribes greater importance to
tied information in the data than to the order information.

Type 111: semi-strong monotonicit v

In this case. no vertical segments occur on the function. since strong monotonicity
precludes them. But the function will normally contain horizontal plateaux’.
indicating the operation of the primary tving option. This combination is used
surprisingly infrequently. given that it seeks to preserve the significant order
information. but gives the freedom to treat ties as indeterminate.

Tvpe I1': strong monotonicity

This is the most restrictive option. where the function is strictly increasing, but can
never be a step function. It should be used when the data are believed (or known)
to be virtually error-free. An example appears in Figures 3.2 and 3.5. It can also
serve as a salutary reminder of what a rigorous and uncompromising
interpretation of ordinal measurement actually involves when applied to real data.
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TYING OPTION CHOSEN

MONOTONICITY
CRITERION Primary (Indeterminate) Secondary (Equivalence)
Weak ) I WEAK II SEMI-WEAK
(Kruskal’s d) May equate unequal data May equate unequal data
May untie tied data Preserves ties
Strong Il SEMI-STRONG IV STRONG
(Guitman's d* ) Preserves strict Preserves strict
inequalities (>, <) inequalities (>. <)
May untie tied data Preserves ties

Table 3.2 Preservation of ordinal information in monotone regression

Nore This table and terminology are based upon Roskam (1969. pp. 9-11) and is reproduced with
permission.

since every infraction will count as evidence against the hypothesis that the data
can be perfectly rescaled ordinally into Euclidean distances.

Note that the question of how to calculate the fitting values has so far been
ignored. but is taken up in 3.5.2. Monotonic regression may also be performed on
quantities other than distances: it provides a general procedure for comparing the
ordinal rescaling of data into a corresponding set of quantities defined by any sort
of model (e.g.. factor or scalar-product models. additive models. etc.; see

Chapter 3).

3.3 Goodness/Badness of Fit:Stress and Alienation
We have seen that the difference between a particular distance and its
corresponding ‘pseudo-distance® (d; — d3) serves as an index of how badly the
distance between j and k in the solution configuration departs from the value
required to preserve an ordinal relation with the data. If there is no inversion in the
required ordering then the difference will be zero. Alternatively, the difference can
be looked on as the residual from monotone regression. i.e. an index of the
difference between the solution distance and (an ordinal rescaling of) the data.
A simple overall measure of how the distances in a configuration ordinally.fit the
data can be constructed by squaring the differences between the actual distances in
the configuration and the ‘distances’ fitted by monotone regression. and then sum
them. MDS almost universally adopts the habit of using a badness-of-fit measure—
the higher the index. the worse the fit—to assess the fit between the solution and
the data. This basic index. called variously raw stress (Kruskal), raw phi (Guttman,
Lingoes. Roskam), or stressform O has the same form as the ‘residual sum of
squares’” in other types of regression. except that in this case it measures the
residuals from monotonic regression. We shall refer to it normally as raw stress.

Stressform 0

So =< Raw stress = ) (dy — d;')k)z

all pairs

Raw phi (k)




56 The User’s Guide to Multidimensional Scaling

By convention. if the fitting quantities are Kruskal's d ik then S 1s referred to as
raw stress. and if Guttman's d% are used. then it is called raw phi. In any event. for
the same configuration, raw phi based on rank images will normally be higher
than raw stress based on Kruskal's BFMF quantities. because of the strong
monotonicity requirement. That is:

Sold*) = Sold)

Raw stress is unfortunately a very unsatisfactory measure of fit for MDS
solutions. The reason is that configurations which are identical in all but size will
have different values of raw stress. But it is not the actual numerical distances (or
co-ordinates) of an MDS configuration which are important or significant. but
only the relative distances. For instance. doubling or halving the scale of the
configuration is usually considered simply an irrelevance. We are only concerned
with obtaining a configuration of points which is unique up to the uniform
stretching or shrinking of the axes (or distances) by any constant. which is simply
another way of saying that distances are at the ratio level of measurement. But
unfortunately. if a configuration is shrunk uniformly by a constant. k. then the raw
stress value shrinks by a value of k*. That being so. if raw stress is used as an index
of fit. it will always be possible to get a better fit simply by scaling down the size of
the configuration! This is obviously an undesizable state of affairs. but the remedy
is simple. To prevent it happening, raw stress can be divided by a factor which
takes the size of the configuration into account. which has the effect of giving the
same stress value to all configurations which differ only in size. A number of such
‘normalising’ or "scale’ factors have been proposed (see Kruskal and Carroll 1969.
Roskam 1975. Lingoes and Roskam 1973). One family (the ‘stress’ indexes) stems
largely from the Bell Laboratories group. and another family from the Guttman-
Lingoes-Roskam group. Since programs from both sources are included in the
MDS(X) series. the interrelations of these various measures are discussed in
Appendix A3.1. For expository purposes. it will be sufficient to discuss the two
most commonly used versions of normalised stress. each of which is widelv used.

3.3.1 Normalised forms of stress

By normalising raw stress. it is possible to compare configurations by making
stress independent of the size or scale of the configuration. and norming its value
between O (perfect fit) and 1 (worst possible fit). The two most commonly used
normalising factors are:

NF I:

Y d (the sum of the squared distances)
(j. k)

This removes dependence on the scale of the distances. Its value will equal p*.
where p is the number of stimuli, if the configuration is centred and standardised
(which means that the sum of co-ordinates of each dimension is zero and the sum of
the squared co-ordinates is p) as is normally the case in MDS solutions.

NF 2: .
(the sum of the squared differences between

Yy — d)*  the distances and their average. d)
(j, k)
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This factor represents the variation of the distances about their mean and should
always be used when data are conditional, such as ratings or rank orders (see
5.6.2), since it helps prevent a situation where a subject’s rank values are fitted by
the same disparity value (see Kruskal 1965).

Basically, normalised stress measures take the form:

RAW STRESS  NORMALISING FACTOR

but usually the square root of this ratio is taken, which has the effect of deflating
the size of the index and making it sensitive to relatively small improvements when
a configuration is coming close to being a perfect fit to the data (cf. Roskam 1968.

pp. 34-5).

( Stressform 1
S, =i\5tress1 = /(Raw Stress/NF 1)

« (2 x phi) S
3.3.1.1 Properties of stress

Several important properties of stress, become more obvious 1f we consider its
squared values, St:

(i) when S, (and hence S?) is zero. then there is perfect ordinal fit, and all fitted
‘distances’ will equal the actual distances,

d = dy, : for all (j, k)

(ii) the maximum value of S sltrc:ss1 is more difficult to determine. but S} can be
shown (Lingoes and Roskam 1973. p. 12) to reach a maximum of (1 — 2/p), which
implies that S, approaches 1 as an upper limit as p, the number of stimuli. gets larger
(as p = 8. 16.32.64: S, (max) = 0.87.0.94. 0.97. 0.98).

(iii) S? can be re-expressed as
1

j
Sp=1- <Z di X djk)

which is equivalent to the proportion of residual variance from monotone
regression.

Stressform 2
S, = | Stress, = | (Raw Stress)/NF 2

/ / o 2 ’ \-
:\/{Z (djk —. djk) Z ((I'jk - (1) }

/

Stress, can be interpreted as being the variation between the distances and the
disparities as a fraction of the variation of distance round their mean. It has
the same properties as stress, when zero, but its maximum value is difficult to
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determine. In general stress, will be larger than stress,. often twice as large. for the
same configuration. Although stress, should always be chosen in preference to
stress,. for conditional data it makes little practical difference which is used to
monitor an MDS solution in the case of the basic model.

So far we have dealt with a situation in which we have a set of data and a
configuration. We have sought to measure how closely the distances between the
points in that configuration are to a monotonic rescaling of the data. and the
measure stress. which performs this task. has been described. We now go on 1o se¢
how stress can be used to indicate not only how well a particular configuration
captures the information in the data but also how an imperfectly fitting
configuration can be improved to fit the data.

3.4 Finding the Best Configuration

The next question is: how does non-metric MDS actually work? Given a set of
data. how does one find a configuration of points in Euclidean space where the
rank-order of the distances best matches the rank order of the data?

3.4.1 Data as constraints on the solution

In principle, it ought to be possible to find a solution analvtically. The rank order
of the data imposes a set of constraints on where-the points can be positioned in a
configuration if it is going to conform to the data. As the number of points incredses.
information on the rank order of the dissimilarities begins to constrain the location
of the points in the configuration so much that the distances to all intents and

It d,.>d,, and dy, < dyp
then point ¢ must lie in the shaded aresa

Figure 3.7 Constraints on positioning a point
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purposes become fixed. (This point was also made by Abelson and Tukey (1959)
and by Shepard (1962b. p. 238 et seq.)).

Actually. the position of the point never becomes ‘fixed’, but rather becomes
constrained within a smaller and smaller region of the space. Consider a two-
dimensional plane. Suppose there are two points a and b. then a third point. c.
whose distance from q is greater than that between a and b (i.e. d,, > d,,). must lie
outside of the circle whose centre is « and whose radius is d,, (see Figure 3.7). If we
also know that d,, is less than d, then. in addition. ¢ must lie within the circle whose
centre is b and whose radius. again. is d_,. Thus ¢ must lie in the shaded area in
Figure 3.7. but may be located anywhere within it.

It should be clear that as the number of points increases and the number of such
inequality constraints also increases. then the area within which a point may be
positioned in accordance with these constraints becomes smaller and smaller (and
indeed mayv not exist). This region within which a point must lie. bounded by the
inequality constraints implied by the data. is known as an isotonic region. since any
point within the region equally satisfies the constraints. As Shepard puts it:

Actually. though. if non-metric constraints are imposed in sufficient number.
thev begin to act like metric constraints. In the case of a purely ordinal scale. the
non-metric constraints are relatively few and. consequently, the points on the
scale can be moved about quite extensively without violating the inequalities
(i.e. without interchanging any two points). As these same points are forced to
satisfy more and more ‘inequalities on the interpoint distances as well. however.
the spacing tightens up until any but very small perturbations of the points will

usually violate one or more of the inequalities.*
(Shepard 1966. p. 288)

The imposition of more and more constraints by increasing the number of points
hence means that the solution becomes more fixed or determinate. What 1s really
happening is that the rank order of the p(p — 1)/2 dissimilarity coefficients in the
data is being “distilled’ or concentrated into the very much smaller (p x r) co-
ordinates needed to define the solution configuration. and the number of data
increases much faster than the number of co-ordinates, so long as the
dimensionality i1s small.

3.4 2 The solution as an iterative process

How is the solution configuration obtained? It is done by a process which is
surprisingly simple in form. though sometimes technically complex in detail. The
user begins by choosing the number of dimensions r in which she wants a solution
to be obtained. Roughly speaking. there should be at least twice as many data as
parameters needed to specifyv the contiguration. i.e. {p(p — 1)/2} > 2(p x r).so the
choice of dimensionality of the solution should be made with this in mind. Other
factors are also relevant. and are considered below in section 3.7.

The basic outline of the process used to obtain a solution is as follows:

*Suppes and Winet (1955) had already established that for the unidimensional case a complete ordering
of all pairwise distances on a closed interval establishes the representation of these distances up to a
multiplicative constant—i.e. a complete ‘ordered metric scale’ is equivalent in the limit to a ratio scale.
(Strictly, this only applies for the limiting case of an infinite number of points). This also confirms the
similar conjecture bv Abelson and Tukey (1959).
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A

Produce an initial configuration (of p points in r
dimensions} which represents a first guess at
what the solution should took like.

B

— Test the fit between this configuration and the data.
r If it is perfect {or at least acceptable), then stop

and print its results. If not,

C
\. Improve the configuration, produce a new better fitting
one, and go back to (B).t,

The process of moving round the cycle from C to B. producing somewhat
improved configurations each time. is termed an ‘iterative procedure’. each cvcle
being an iteration. Before the advent of electronic computers. such procedures were
simply not feasible—it is not unusual for there to be 50-100 iterations before a
satisfactory solution is obtained.

All.non-metric MDS programs follow this same basic procedure. but there are
considerable differences in the details of the process. many of them now of purely
historical interest. Very similar procedures had also been developed independentiy
in Japan by Hayashi (1968) termed "quantification scaling’. and in France by
Benzecrt (1964) who had produced I'analyvse des correspondances’.

35 General Outline of MINISSA
The next step is to outline the general iterative procedure in a little more detail. but
in a non-technical manner. The overall flow is illustrated in Figure 3.8.

Let us begin by expanding on the 3-step process to include the major steps
followed 1n all the basic programs.

3.5.1 The initial configuration

(i)* Create an initial configuration which will provide a good estimate of the final
solution. This will reduce the number of iterations. and lower the probability of
finishing with a sub-optimal solution (or "local minimum’. see section 3.5.4). In the
case of MINIssA. this is done by keeping the r most important principal components
of a matrix which is based upon the rank-order of the dissimilarities (see Appendix
A3.2 for details).

*The roman numerals follow the steps of the sequence summarised in Figure 3.8.
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r

Move old config.

1

—

| Normalize

configuration

(ii)

| Find
——bv; distances
(iii)

i

Output
final config.

etc sTop.

' to new config.

(viit)

S

Fit
disparities
(iv)

Find
stress
value

(v)

,/ Is
stress
acceptably
low ?

(vi)

Calculate Correction
Factor

Kruskal algorithm:
Find gradient—Find stepsize
fvii)

A

Figure 3.8 Summary of the iterative process

(11) Normalise this configuration so that the origin is at the centroid (centre of
gravity) of the stimulus point locations. and the configuration has constant
dispersion ti.e. the sum of squares of the co-ordinates equals the number of points).
This step is not always necessary. but is relevant and important if raw stress or phi
is being used to measure badness of fit.

3.5.2 Comparing the current configuration with the data
The aim is to produce a configuration whose distances match the rank order of the
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input data as closely as possible. How well does our current configuration, i.e. at
the current iteration, match the data? The answer to this question involves three
things:

calculating the distances between the points in the current configuration:
comparing these distances with the data (by calculating disparity valuces): and
assessing how badly the configuration departs from perfect ordinal (it to the
data. i.e. by calculating stress.

Each point is now taken up in turn. in (iii). (iv) and (v) below. and illustrated by
reference to a simple example shown in Table 3.3. Let us supposc the data
dissimilarities are those given in section I (‘Original Data’) of Table 3.3. The first
step consists of sorting the dissimilarities into ascending order (from the lowest to
the highest value). keeping track of the column and row reference of cach datum.
The sorted data values are given in row 2 of Table 3.3. and the table (column and
row) indices of each datum are noted in row [. It should be stressed that this
information remains fixed throughout the iterative procedure.

(iii) Find distances. Each time a new configuration is produced. a ncw set of
distances is calculated. according to the usual Euclidean distance formula:

- f5(e-o]

These current distance values are then slotted into the same position as their
corresponding data value. as in row 3. For instance, the distance between points 5
and 1. namely 6. is inserted into the second position which corresponds to the data
dissimilarity between stimuli 5 and 1.+

(iv) Fit disparities. Now we are in a position to 'compare the solution (the
distances in the current.configuration) with the data. which is done by first
calculating disparities (dO ). which are to be monotonic with the data. As we have
seen. it is possible to calculate either Kruskal's weak monotonic <I,A values or
Guttman's strong monotonic d% rank image values. MINISSA and its cognates
calculate both forms of disparities. Guttman'’s rank-image method has been found
to be useful in avoiding sub-optimal solutions especially at the start of the process.
but later in the program a switch is made to Kruskal’s weak monotone regression.
which provides a smoother. "finer-honed’ approach to obtaining an ucceptable
solution.

(a) Monotone Regression (Kruskal's d disparities)
The procedure of finding the Kruskal J values uses the weak monotonicity criterion
thatif 9;; < J,, then the corresponding d values should be in the same order. but are
permitted to be equal without the tie counting as an infraction of monotonicity.
In brief. monotone regression consists of working consecutively through the
distance values. checking whether they are in the same order as the data. However.
when an inversion appears. i.e. where one or more distance values decreases, then a
‘block” is formed by taking the offending value and the preceding onc. These are

#The reader will have noticed that the distance values are not genuine distances at all, but numbers
chosen to simplify the arithmetic of the example.
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averaged until monotonicity is restored between blocks. The sequence is illustrated
in rows 4 through 8 of Table 3.3. The sequence consists of repeatedly comparing
the distances (row 3) and the data (row 2). It is useful to follow the example in
detail.

1 The first two distances are compared to the data. and are found to be in
correct (increasing) order. but the third distance decreases to the value of 3. At this
point, we go back one position (to the second distance). treat the distances
corresponding to (5. 1) and (2. 1) as tied. and average them to 43 (row 5). Now we
have three disparities which are weakly monotonic with the data. viz

data .12 3
disparities ... 3 (45 4%) (cf. row 5)

2 The subsequent four distances increase. but then the eighth (and ninth)

values decrease, so once more we backtrack to the last distance which is in order—
the seventh—and average. The sequence is now

data .. 6 7 8
disparities ... 10 12 12
So far so good. - - i

3 But then the ninth value decreases. so the backup process continues. still
averaging distances until finally a block is formed whose average does preserve
order. with respect to both the block below it and the one above it. (This is what
Kruskal (1964b, pp. 40-1) refers to as a block being ‘down-satisfied’ and "up-
statisfied” with respect to monotonicity):

data ... 6 7 8 9 10
disparities ... 10 (11 11 11) 15 (cf. row 9)

The monotone regression procedure of fitting a set of disparities to the data is
now complete (row 9). There are seven blocks in all. and a set of disparities has
been produced which are now perfectly weakly monotonic with the data (compare
rows 2 and 9).

(b) Rank Images (Guttman’s d* disparities)

In Guttman’s approach. we seek a set of quantities which are strongly monotonic
with the data and once again use the distances in the current configuration as a
starting point for calculating disparities. Guttman'’s procedure consists simply of
taking the current set of distances (row 3), sorting them into order. and using them
as the rank-image fitting quantities, d* (row 10).

Notice that in the example chosen. all data values are distinct. This will rarely
happen in practice. The calculation of disparities is modified slightly when ties
occur in the data, depending upon whether the primary or secondary approach to
ties 1s chosen by the user. The process of calculation is described in detail in
Roskam (1975. p. 12 bis). Note also that in this example there are two equal
distances (i.e. those between points 4 and 5 and 1 and 2). These two values become
the fitting values corresponding to the pairs (4. 5) and (1. 2). and thus in the
Shepard diagram would show up as a vertical segment even though strong
monotonicity is being sought.
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(v) Find stress value. We are now in a position to assess how well the current
configuration fits the data. This is done by calculating the extent to which the
actual distances diverge from the distances-made-to-conform-to-monotonicity, 1.€.
from the disparities. Since the sum of all the differences (d;, — d,) will be zero. they
are first squared.T Row 11 presents the squared differences based on J (formed by
subtracting row 9 from row 3 entries and squaring), and row 12 presents those
based on d* (subtracting row 10 from row 3 and squaring). Whichever fitting
procedure is used. the overall picture is very similar: four of the ten data are fit
perfectly. and in both cases the main distances contributing to the badness-of-fit
are between 3 and 3. 4 and 3. 5 and 1. and 2 and 1. Clearly. points 5. 3 and 1 are
especially badly positioned in the current configuration. and will need to be moved
to achieve a better-fitting configuration.

The overall badness-of-fit is now calculated by summing the squared differences
to lorm raw stress (based either on d (row 13) or on «* (row 14)). Note that rank
image fitting produces higher stress values than monotone regression fitting.
because strong monotonicity i1s the more stringent criterion and is not a least-
squares fit to the data.r

To compare configurations. a normalised version of stress is necessary. and these
are presented in rows 15 to 18. Stress, (d) is the measure most commonly reported
in the literature. and is to be preferred at least on the grounds that we have more
information on its properties and distribution than for any other measure.

(vi) Is stress acceptably low? There are several grounds for terminating the

iterative procedure:

(a) if the stress value is zero:

(b) if the stress value is “acceptably close” to zero:

(c) if the improvement in stress since the last iteration is so little that it does not
seem worth continuing. s

In the first instance. a perfectly fitting configuration has been obtained, and a
perfect rescaling achieved.

In the second instance. a number of guidelines have been given as to what value
of stress counts as ‘acceptable’. (see especially Kruskal (1964b, p. 32) and Roskam
(1975, p. 16)). The justification for these values is obscure. and even as rules of
thumb thev should be treated with considerable caution. A rather different
approach to assessing stress values is the so-called ‘Monte Carlo’ simulation
approach. which is discussed in greater detail below in section 3.7.1.

A third criterion for terminating the iterative process is simply that there has
been so little improvement in the last few iterations that it is scarcely worth
continuing. A good example is provided in Figure 3.9. which charts the progress of
just over 200 iterations in reducing stress.

Clearly. there is a dramatic decrease in stress in the first few iterations: from
0.334 at the start to 0.138 at iteration 5. and improvement continues until just after

*When using rank images. the differences will not necessarily sum to zero. but the squaring convention
1s employved to keep comparabilitv with BFMF estimates.

fRaw stress. phi. based on J* rank image fitting (whimsically christened ‘soft squeeze’ by Guttman) is
used to monitor the first stage of MiNissa (and related programs). Stress, based on monotone regression
{called "hard squeeze” by Guttman) is used to monitor the second stage of MINIssA.
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the 100th iteration. Beyond that point, there is virtually no improvement for the
next 100 iterations: it would have saved time and expense to have stopped at the
point where the improvement between iterations had become negligible.t

3.5.3 Improving the configuration
Having calculated the disparities and the measure of overall fit between the present
configuration and the data, we now want to produce a new configuration whose
distances will approximate more closely to the data. Put slightly differently. we
want to move the points in the current configuration in such a wayv as to decrease
the stress value.

As we have seen above. by looking at the differences between the current set of
distances and disparities, (d, — dj,). we can tell:

1 which are the greatest discrepancies (by the absolute value of the difference):

and
2 which points are involved (by referring to the row and column references of

-

these values).

The conclusions will depend in part upon which disparity values are used. For
example. in Table 3.3, - 3"

(a) using monotone regression (row 11). the two greatest differences have the
value 2. referring to the pairs (4. 3) and (5. 3):

(b) using rank images (row 12). the greatest difference is (3. 3). with a value of
4. followed by (5. 1) and (4. 3) with a value of 3.

But we can aiso infer two further pieces of information about each pair of points:

3 in which dlrectzon 1o move the points to produce a better fir: and
4 how tar to more them.

(vii) Calculate correction factor. A full and accurate explanation of how this
information is obtained involves differential calculus. and will not be discussed
here.x But it is possible to get a perfectly adequate grasp of the basic process by a
little simplification. drawing on Gleason (1969, pp. 6—8) and Spence (1978. p. 192).
Let us concentrate upon one point. say point 3 in the present example and its
relationship to each other point in the current configuration.

First consider point 5 with respect to point 3. Now imagine a line drawn in the
configuration to connect points 5 and 3 (its length will be d;, = 9). How well does
the current positioning of points 5 and 3 correspond to the da*»? If it were a perfect
correspondence. then the difference (d:; — d.;) would equal zero. As it is. the
difference (9 — 11) = —2. This tells us that in order to improve the fit point 3
should be moved away from point 3 so as to increase the distance. and that this

+In the MDS(X) series, control of the number of iterations is given by the ITERATIONS command (MINISSA.
ssaM ) which sets the minimum number of iterations before a test is made. From then on. a check is made
of each iteration to see whether improvement in stress has been more than a given amount. If not. the
iterations are terminated.

+The method of ‘steepest descent’ or ‘negative gradients’. which is used to move the conﬁguranon is
discussed Kruskal (1964b. pp. 30-9). The methods used in MiNissa are reviewed in the MDS(X)
documentation, and a full technical discussion is contained in Lingoes and Roskam pp. 12-33).
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Figure 3.9 Stress by iteration

distance should be increased by 2 units if the difference is to be zero. (In general. if
d < df. then the difference is negative. which indicates that the points should be
moved away from each other.)

Now consider point 3 and point . The difference (d.; — dey) = (6 — &)
= — 14, This tells us that point | should be moved towards point 5 (to reduce
the distance. and lower the difference). and should be moved 15 units if the
difference is to be zero. (In general. if d; > dY,. then the difference is positive
which indicates that the points should be moved towards each other.)

Finally. consider point 3 and its relation to points 2 and 4. In this case. the
difference is zero. indicating that the fit is perfect and thev should not be moved.

Usually the formula used in MDS programs to improve the position of a point j

with respect to another point k takes the form

NEW POSITION of j = OLD POSITION of j + CORRECTION FACTOR

new  old o
. + - '\‘J e '\:I\'
X A dj

J J

specifically

I
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A little arithmetic reduces the formula to a particularly simple form+:

nf“ - 0\@ +(dy = dS)
) Y
If there are p points. then for each there will be (p — 1) correction factors. pushing
and pulling point p in various directions and with different degrees of force. In this
instance. point 5 is being pushed away from point 3 by 2 units. and towards point |
by 13 units. The actual move is bound to be a compromise between these various
forces. and the greatest discrepancies will obviously tend to dominate the
movement of the points,

When all the discrepancies are considered simultaneously. it 1s necessary to
rewrite the correction formula to take into account the forces from «ll the points
{represented in the summation). and consider the location of the point p on each
dimension. a.

General correction formula:
new old dU
- =t . — N
v \ -— N jet

" o
The only new quantity to appear is z (alpha) the “step-size” which in Kruskal's
version represents the overall amount by which thé-~points are moved. The
technicalities are complex.: and all the user need_RPnO\\' 1s that longer step-sizes are
usually taken in the earlier stages of the process. and when a program is minimising
in terms of rank-image disparities. whereas smaller steps are taken towards the end
of the process (and when stress is being minimised by reference to Kruskal's weak
monotonic disparities). In fact. mMinissa uses a hvbrid approach. starting by
minimising raw phi stress in terms of Guttman’s Rank Images (‘soft squeeze’). and
then switching to minimising stress, in terms of Kruskal's weak monotone
disparities (*hard squeeze’) later in the process.

. ) new  old .
*The first formula takes the form: = — {correction factor). Now examine the correcuon factor
X X
. . . i I / . . . . . .
further. Since we are restricting attention to the line joining x; and ;. then (x, — x, is simply d .. Thus
the correction factor reduces to

/
i

Putting the term in the brackets over a common denominator. gives

Wy, — d;
- -
e

A

and cancelling. the correction factor simphfies to

Hence. the formula now takes on the simpie second form:

new old
= ~ W, = d)
X .\'I
 The basic reference is Kruskal (1964b. p. 121y, which is further expanded and discussed in Lingoes and
Roskam (1973, pp. 13-16). The Guttman-Lingoes procedure is a somewhat different correction
procedure. described in Lingoes and Roskam (1973. pp. 22-9) which provides for different step sizes for
each point.
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3.5.4 Local minima and related problems

Another analogy, used to explain what is happening during the process of moving
the configuration to one that fits the data better, 1s geographical. Suppose our data
refer to 20 stimuli and we seek a solution in three-dimensions. We are now asked to
think of all possible three-dimensional configurations or solutions—good, bad or
indifferent—and pay attention to the stress value of each one. Obviously, what we
are looking for is that one configuration whose stress is lowest. One way to think
about the problem is to simplifv matters and imagine the solution space like a
‘rolling terrain. with hills and valleys” (Kruskal 1964b. and Kruskal and Wish

1978. pp. 27-8). They continue:

Each point of the terrain corresponds to an entire configuration (not to a point
in the configuration). Each point of the terrain can be described by three co-
ordinates—the altitude. and the two location co-ordinates. North-South and
East-West. The locations co-ordinates are analogous to all the co-ordinates of
all the points of the configuration. (Of course. a configuration with p points in r
dimensional space has p x r co-ordinates. and p x r is far greater than two, so
the analogy does not convey the full richness and difficulty of the situation). The
altitude 1s analogous to the objective function, that is, the altitude is the stress.
{quoted. with slight notational changes, from Kruskal and Wish 1978, p. 27,
with permission)

The real problem is that the terrain—the hills of high stress and .valleys of low
stress—is unknown territory. and we have no means of knowing before the event
even what its general features are like. so we are in the position of a blindfolded
parachutist dropped from a plane on a dark night (Kruskal and Wish's analogy) or
a climber lost in the mist. It is not in fact quite as bad as this—there is a way to
locate a sensible starting point. by choosing an initial configuration which gets us
fairly close to the point where the stress is lowest. Nonetheless. the imagery is apt.
To move from the present posiuen. a configuration of relatively high stress at the
earlier stages of the iterative process. we need to know two things: in what direction
the ground is sloping downwards: how large a step to take in that direction.

In the first case. we can detect the general direction by calculating the negative
gradient. which tells us in what direction to move each point of the current
configuration if we want to [ower stress: it gives rise to the correction factor
formula discussed above in 3.5.3. In the second case. we need to adopt a strategy
which avoids the extremes of foolhardiness and over-cautiousness—if we move too
far in the general direction of improvement. we might in fact overshoot the actual
minimum. and if we move In very small steps we are going to consume an
enormous amount of time getting virtually nowhere.

How does the climber know that the minimum (valley floor) has been reached?
The answer is, where the gradient 1s zero: that is, where stress increases in every
direction. (This state of affairs is actually tested for at each iteration, and provides
vet another criterion for terminating the iterative process.) But unfortunately there
is no guarantee, even if a vallev tloor is reached, that it is actually the lowest point
on the terrain—it may simply be a local dip. The situation is illustrated in Figure
3.10. Indeed. there is no sure way of knowing whether a particular configuration is
actually the one which best fits the data. i.e. that a ‘global minimum’ has been
reached. But there are, at least. ways of guarding against entrapment in a local
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Figure 3.10 Local and global minima
minimum. and fairly reliable ways of detecting a local minimum:

(a) Reliable modern computer programs avoid starting from an arbitrary
initial configuration. and produce an initial configuration which is likely to be
fairly close to the global minimum (see Appendix A3.2). This is like using what
information we have about the terrain to position our climber close to where we
think the lowest valley is.

(b) Programs use more than one minimising procedure to capitalise on the
strengths of each approach. (Thus MINissa uses the somewhat erratic but rapid
Guttman technique at the start and then switches to the smoother Kruskal
technique when the earlier phase shows no signs of systematic improvement.)

(c) Tt is always sensible to obtain MDS solutions in a number of different
dimensions (e.g. in five through one dimensions. for reasons discussed in section
3.7.1 below). The stress value should decrease as the number of dimensions
increases. If it actually increases then that solution is bound to be a local minimum.

(d) The best safeguard against local minima. and one which 1s strongly
recommended, is to use several different starting configurations (implemented in
MINISSA by using the READ conNfFIG command) and see whether they produce
markedly different results. (Do not rely upon just looking at the resulting
configurations: remember that a reflected and-or rotated configuration can look
very different to the original one, though be identical to it in the sense of being a
legitimate similarity transformation. If in doubt it is safest to use PINDIS to compare
configurations; see 7.3.2 below).
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(viil) Move the old configuration to a new positioning of points. When all the
correction factors and the step size have been calculated. the general correction
formula is used. and every point is moved into greater conformity with the data.
Thus a new configuration has then been obtained and the iterative cycle is

complete.

3.5.5 The final configuration
In the basic model, and indeed in most MDS models. the final configuration is

rotated to principal components before being output. This rotation does not in any
way change the pattern of points or the relative distances between them, but
principal components (or “principal axes’) provide a framework of reference axes
which possesses some useful statistical properties. It may be helpful to recapitulate
the method of principal components.

Given a set of points located in a multidimensional space (in this case the final
configuration) the method of principal components first finds the line (axis
dimension) through the configuration which has maximum variation, i.e. along
which the co-ordinates of the points are maximally spread or differentiated. This
line is termed the first “principal component’ or ‘principal axis’ of the space.
Following this a second axis is found which 1s orthogonal to the first axis, i.e. which
is statistically independent of the first component. in the sense that the correlation
of the co-ordinates of the points on the two components is zero, and also explains
the maximum amount of the remaining variation. This is the second principal
component. The process continues in this manner—identifying axes which are
orthogonal to those already found and which explain maximum amounts of
remaining variauon—until the final components are normally explaining trivially
small proportions of the total variation. In this sense. principal components is
often viewed as a way of arienting the configuration so that variation is
concentrated into as few dimensions as possible.

The actual amount of variation represented by a particular component is given
by the size of its latent root (also called the eigenvalue) which can be thought ofas a
standard deviation measuring the dispersion of the objects along that dimension
(and indicated by the sigma value at the foot of each column of the final
configuration printout in some MDS(X) programs). Comparison of the values of
sigma is often instructive: the more equal they are, the more circular (or spherical
in three-dimensions) the pattern of points in the final configuration is. Conversely,
the more unequal they are. the more ellipse-like the pattern is. If any sigma values
are close to zero. this signals the fact that there is virtually no variation on the
dimension concerned—i.e. that the dimensionality chosen for analysis is
unnecessarily high.

3.6 Assessing the Solution

We now want to illustrate the process of finding a ‘best solution’ to a set of data
using non-metric MDS. Information from the process is used to help decide how
good a solution has been obtained and diagnose inadequacies in it. This will be
done by using a genuine set of data. as opposed to one chosen for purely illustiative
purposes.
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3.6.1 An illustration of the iterative procedure in non-metric MDS
In a study (Coxon and Jones 1978a, p. 42 et seq.) of the natural groupings which
people use to classify occupations, a group of 71 individuals were asked to sort a set
of 32 occupational titles into as many or as few groups as they wished. A measure
of pairwise similarity between the occupations was defined as the frequency with
which two occupations were sorted into the same group: the greater the number of
subjects who put a pair of occupations together, the more similar they are defined
to be. (This co-occurrence measure i1s M /. discussed earlier in 2.2.3.3). The
frequency matrix is presented in Table 3.4. The data are analysed by the basic non-
metric distance model in two dimensions. using stress, and Kruskal’s weak
monotonicity.

In order to dramatise the process of improvement, a deliberately poor starting
configuration was chosen (stress, = 0.986). The iterative process is now examined
at the 2nd. 3th. 10th and 23rd iteration to see what progress is made.

[terations 0-2 (Fig. 3.11)

Figure 3.11a shows the moves made in the positioning of the points from the initial
configuration (iteration 0) to the second iteration. Note that there is very little
change in positioning, but that the step size increases. By iteration 2, the monotone
fitting function (Figure 3.11b) 1s beginning to descend from the top left to the
bottom right of the Shepard diagram (since similarities are inversely related to
distances). The transformation function is little better than a straight vertical line.
indicating that a very large number of data values are being fitted by the same
disparity value.

Iterations 2-3 (Fig. 3.12)

Clearly. the positioning of the points is changing fast (Figure 3.12a) and improving
rapidly. with a reduction in the size of stress, by a third. Note that larger step sizes
are occurring. By iteration 5. the monotone fitting function (Figure 3.12b) is taking
on its characteristic “steppy’ forf and the larger number of steps at the bottom
right hand of the function shows that the improvement is concentrated principally
in the positioning of the smaller similarity values.

Iterations 5-10 (Fig. 3.13)

There is a dramatic improvement from iterations 5 to 6 (Figure 3.13a) but beyond
here it tails off somewhat. and the step size decreases fairly drastically. In terms of
improvement. the point of diminishing returns is setting in. The monotone function
is now fitting the highest and lowest similarities well, though the middling data
values are still not well fit. Note that monotone function is taking on a recognisably
convex form (cf. Shepard [974. p. 400). suggesting that the co-occurrence
frequency data might well be related to distance in a more regular (polynomial)
manner.

Iterations 10-23 (Fig. 3.14)

The improvements are now very slight indeed: stress, decreases by the same
amount between iterations 9 and 11 as between 11 and 23. Also. the step size
becomes smaller and smaller. till the process finishes at iteration 23. The Shepard
diagram (Figure 3.14b) for iteration 23 is virtually identical to that for iteration 10,
indicating some slight improvement.
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Figure 3.15 2-D MDS final configuration (rotated to pr/nCIpa/ axes). co-occurrence
of 32 occupatlona/ titles

After the final. 23rd iteration. the conﬁguratio}l is rotated to principal axes and
output. together with information on fit (stress values) and. if desired. also on the
distances. the disparities and the residuals (d, — d}). The final configuration
(centred and normalised) is given in Table 3.5. and is plotted in Figure 3.15. (Since
the axes may be rotated at will, they are not drawn in; this allows attention to be
concentrated upon characteristics of the configuration other than the arbitrary
positioning of the axes.)

3.6.2 Diagnostics
Before beginning to interpret the final configuration. it is a good practice to assess
first the adequacy and stability of the solution. The main questions are:

(a) Isaconfiguration with this stress value an acceptable approximation to the
data?

(b) Is the dimensionality we have chosen likely to be the correct one?

(The answers to these questions are deferred until the next section.) Of more
immediate relevance is the following set of questions:

(c) How well is each datum fit by the solution?
Are the residual values evenly distributed. or concentrated in a few rather badly fit
instances”?
Is one particular stimulus causing most of the trouble?

3.6.2.1 Analysis of residuals

The basic information necessary to answer all these questions is contained in the
final Shepard diagram (see Figure 3.14b), which should be read like any other
regression plot. It consists of a scatter plot of the data points with the best-fitting
transformation function (in this case. the weak monotonic or ordinal function)
drawn through it. The horizontal spread from this function represents the overall
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Final Configuration

Occupational Titles Dimensions
Abbrev. No. Title I I1
CA ] Chartered accountant -1.246 -0.082
SST 2 Secondary school teacher -1.152 0.472
GM 3 Garage mechanic 0.733 -0.392
BM 4 Barman 1.262 0.156
ST 3 Statistician ~1.241 -0.117
SW 6 Social worker -0.703 0.488
C 7 Carpenter 0.814 -0.496
AD 3 Ambulance driver 0.804 0.416
CPR 9 Computer programmer -0.638 -0.061
MOR 10 Minister of religion -1.045 0.391
PL 11 Plumber 0.678 -0.431
MPN 12 Male psychiatric nurse -0.267 0.321
BCK 13 Bank clerk -0.144 0.391
PST 14 Primary school teacher -0.886 0.574
UMO 13 Unskilled machine operator 1.445 0.110
on a factory assembly line
PM 16 Policeman 0.108 0.473
CE 17 Civil engineer -1.126 -0.229
PHT 18 Photographer 0.094 -0.678
BSL 19 Building-site labourer 1.485 0.049
RCK 20 Restaurant cook - -0.704 - -0.227
AP 21 Atrline pilot -0.399 -0.285
A 22 Actor -0.556 -0.785
RED 23 Railway engine driver 0.555 -0.149
PO 24 Postman 1.078 0.417
GEO 25 Geologist ~1.143 -0.254
SMG 26 Sales manager -0.827 -0.154
TDH 27 Trawler deckhand 1.335 0.033
TDR 28 Taxi driver - 1.049 0.221
ESG 29 ~Evye surgeon -1.353 0.156
JN 30 Journalist -0.528 -0.543
LT 31 Laboratory technician -0.138 -0.059
BCR 2 Bus conductor 1.249 0.275
Mean 0.000 0.000
S.D. 27.762 4.238

Stress, (d) = 0.2808 (primary approaches to ties)

Table 3.5 Final 2-dimensional configuration of the data from Table 3.4

degree of fit (recall that stress is a normalised measure of the dispersion of the
distances from this monotonic regression function). The further a data point is
from its corresponding disparity value (measured on the distance axis) the worse fit
it is. and the larger the associated residual value (dj, — ij) will be. The matrix of
residual values, rounded and multiplied by 10 (so that O represents a residual
between 0 and 0.499. 1 a residual between 0.5 and 1.499 etc.) is presented in Table
3.6. accompanied by a frequency diagram. As is often the case. the distribution of
residuals is strongly skewed toward the small values, indicating overall goodness of
fit. But it is worthwhile giving special attention to the high residual values. and
especially to the eighteen with values over 0.45 (i.e. values of 5 and 6 in Table 3.6). A
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look along row. and down column, 21 of Table 3.6 (corresponding to the Airline
Pilot) shows that seven of the worst fit values occur in association with this one
occupational title. A similar inspection will show that 26 (Sales Manager) and 13
(Bank Clerk) are also over-represented among the highest residuals.

A more systematic way of examining where badness of fit is concentrated is to
look at the contribution which each point makes to the overall stress value, and
this is done in Figure 3.16.% Note that we are taking into account all the residuals
in which each point is involved. and not just the extreme ones. Nonetheless, the
same conclusion is evident: points 21 and 26 contribute significantly more than the
others to the badness of fit. We do not know why these particular points should be
so troublesome. but analysis presented elsewhere (Coxon and Jones 1979, p. 42 et
seq.) suggests that the worst fit occupations have characteristics which are not
common to the remaining ones. In any event, it is worth considering simplifying
the analysis either by removing the worst fit point(s) by deleting the relevant rows
and columns from the data matrix and re-running the program, or by re-running
the program in a higher dimensionality to see whether the additional dimensions
allow the fit to be significantly improved.

It could also be that we have encountered a local minimum, in the sense that
some other configuration may exist with lower stress. which would locate these
worst-offending points in another position but would be substantially similar in
other respects. The only way to check this.f is to re-run the program with a
different initial configuration—say. the current final configuration with the points
relocated to where the user thinks they ought to be. In the present example,
different starting configurations and methods of minimisation produce virtually
identical configurations (compare Figure 3.15 with Figure 2.8 in Coxon and Jones,
1978a. p. 43) so we can conclude with a fair degree of certainty that the point
locations are as accurate as they can be. Nonetheless. the actual location of the
worst-fit points must be treated With considerable caution when interpreting the
configuration. and to emphasise this. these points are in bold print in Figure 3.15.
(We shall return to the interpretation of Figure 3.15 in the next chapter.)

3.6.3 Degenerate and trivial solutions

Occasionally. final configurations can be produced which have very low stress
values but are substantively meaningless. This arises when the low stress value has
been obtained by the program capitalising on some technical feature of the
minimisation process. such as weak monotonicity, or upon some unanticipated
features of the data. Such configurations are often termed ‘degenerate’ or ‘trivial’
solutions (see Shepard 1974, pp. 391-9).

A good example of this occurs in very highly clustered data. If the data are such
that the stimuli fall into a small number of clusters where the dissimilarities within
each cluster are uniformly smaller than those between the clusters, the effect will be
to produce a very low stress solution. where points within a cluster will condense or

+The individual point contributions do not add up to the stress value, because we are actually
examining all the (p — 1) pairwise contributions to stress involving a particular point. The point
contributions do not therefore contribute additively to stress.

tInteractive MDS programs such as spaces (Schneider and Weisberg, 1974) allow the user to re-
position or delete points to see how stress values change.
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Figure 3.16 /ndividual point contributions to total STRESS, of 0.2808 in two
dimensions

even collapse upon a single position and the program will then be able to minimise
stress simply by maximising the distance between the positions of the clusters. This
1s not to say that if there are recognisable clusters of points in a final configuration
the solution is therefore degenerate. For instance. it is not difficult in Figure 3.15 to
spot at least two fairly coherent, genuinely distinct. clusters at the right hand side of
the space. the groupings (TDR. BC. BM. UMO. TDH. BSL) and (RED. RCK.
GM. PL. C). which comprise the "unskilled” and -“trades’ categories used by the
subjects who made the judgments on which the data are based (Coxon and Jones
1979. pp. 39-41). However. if a degenerate clustering does occur. it is worthwhile
making a separate scaling analysis of the stimuli involved in each cluster.

Two other examples of possible degeneracy have already been mentioned earlier
when discussing tvpes of monotonicity and different approaches to ties in the data.
First. weak monotonicity allows distinct data values to be fit by the same disparity
value: indeed. the block-averaging procedure used in monotone regression does
just this. Usually there should not be a markedly smaller number of blocks
(disparity values) than there are distinct data (dissimilarity values). However. if
there are very few blocks and they contain a large number of entries, then the
solution may well be degenerate. This situation shows up on the Shepard diagram
in the form of long vertical segments on the monotone function, each with a large
number of associated data points, because a large number of data are being fitted
by a single disparity value.
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Secondly, if the primary approach to ties is chosen, the program is given the
freedom to fit different disparity values to data which have the same value, without
this counting towards badness of fit. Sometimes this freedom is grossly exploited by
the program. especially when the data contain only a few distinct values (for
example, when a 3-point rating scale is used on pairwise judgments of a large
number of stimuli). Where this occurs it is indicated on the Shepard diagram by the
appearance of long horizontal segments on the monotone function, highly
populated by data points.

It is very difficult to determine decisively whether a final configuration is ‘really’
degenerate or trivial. but this is not the point. Rather. the user should be alerted to
the danger signs of artificially low values of stress which can often indicate serious
loss of information. and to the reasons for their occurrence. At the very least, it is
good practice always to inspect the Shepard diagram and the set of disparity values
relating to the final configuration. If any of the tell-tale signs of a trivial or
degenerate solution appear in a given solution. then a re-analysis should be made
using options which counteract the weakness concerned.

1 If the researcher has objective information, or even a strong hunch. about
what the configuration should look like. then Confirmatory MDS should be used.
or alternatively the points whose positioning is known should be fixed (by the Fix
POINTS command in ssAM or by using PREFMAP ), and the analysis run to determine
the position of the other points.

2 If the monotone function is very ‘steppy’, containing many long vertical and
horizontal segments. then a more restrictive function which excludes such steps
may be used in preference to the monotone function. A fairly common option is to
choose to fit a linear (or even a power) function between the data and the distances,
and this can be done by using the MRSCAL (metric scaling) program (see 6.1.4).

3 If the difficulties arise because the primary approach to ties has been used.
the data can be re-analysed with MiNissa. using the secondary ties option. If they
arise due to weak monotonicity. the data can be re-analysed using ssam, applying

the strong monotonicity option.

Having discussed the relatively rare and unusual problems of degeneracy. let us
turn to the more important general issue of assessing the stress value of a
configuration.

3.7 Stress, Dimensionality and Recovery of Metric Information
Three important and related issues arise in using MDS programs. These are:

(1) How is the stress value of a configuration to be interpreted?

(i) What is the ‘real’ or "best’ dimensionality for a solution?

(i) How well can non-metric MDS recover information if the data are "noisy’
or error-prone’?

3.7.1 Evaluation of stress
A number of factors affect the value of stress. The most important are:

(1)  The number of points. In general, the larger the number of points the more
the information to be fitted and the higher the stress.



84 The User's Guide to Multidimensional Scaling

(i1) The dimensionality of the solution. The higher the dimensionality of the
solution, the easier it is to fit the information, and therefore the lower the stress
value. In general. it is possible to fit any data relating to p points perfectly in p — 2
dimensions. Such a solution 1s termed a ‘“trivial solution’.

As we have noted before. a further set of factors holds as a necessary result of
options (or default values) chosen by the user in obtaining a solution. and
discussed above. These are:

(1)  The type of stress. Raw stress;/phi is necessarily larger than normalised
stress and. because of the different normalising factors. stress, is normally about
twice as large as stress,.

(1v) The type of monotonicity criterion. Guttman’s strong monotonicity
criterion i1s more stringent than Kruskal’'s weak monotonicity criterion and
therefore stress based on strong monotonicity will necessarily be larger than stress
based on weak monotonicity.

(v)  Tving approach. The secondary approach to ties. treating tied values as
equivalences, produces higher stress values than the primary approach.

Because stress is affected by all these factors. it is meaningless to talk about what
an "acceptable value of stress is’ without further specification. To simplify matters.
we shall therefore restrict attention to the paradigm case of stress:

stressform 1:
based upon Kruskal’s d (weak monotone) fitting quantities:
using the primary approach towards ties.

In asking what is an acceptable level of stress. we are asking a variant of the
common statistical-question. ‘Does the non-metric MDS model fit the data well
enough that the stress value could not have arisen by chance?" (Cf. Kruskal 1972b.)
Put slightly differently, we advance the null hypothesis that some chance
mechanism could have generated the data. and we use this as a bench-mark to
assess how far the actual configuration departs from a random distribution. Very
little progress has been made in analytically deriving a statistical distribution of
stress, and recourse has been had instead to so-called Monte Carlo simulation
methods (Young 1970: Wagenaar and Padmos 1971: Isaac and Poor 1974: Spence
1972: Spence and Graef 1974).

3.7.2 Simulation of stress values

The basic process in simulating the distribution of stress consists of producing a
configuration of p points in r dimensions and calculating the distances between the
points in the configuration. This is the ‘true’ or generating configuration. The
distances (or in some cases the coordinates) are then distorted by adding to them
‘noise’, 1.e. error in differing but specified amounts. Sometimes in addition the
distances are transformed monotonically. The resulting set of error-perturbed
distances are now treated as if they were dissimilarities data. and are scaled by a
non-metric MDS distance model program in a number of different dimensions,
including the ‘true’ dimensionality ¢ (for we wish to assess the effect of scaling data
in the wrong dimensionality). A large number of such dissimilarity matrices are
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generated which vary in the number of points in the configuration, the ‘true’
dimensionality and the amount of error added. All of these matrices are scaled and

the resulting stress, values are noted.

Spence and Graef’s M-SPACE procedure
Although there are several variants of the procedure. the most well known is the

Spence-Graef M-space procedure (Spence and Graef 1974), a variant of which is
incorporated in the MiNissa program in the MDS(X) series as a way of helping users
decide upon the "true’ dimensionality and likely error present in their data.

Spence and Graef constructed random configurations containing a given
number of points (p = 12. 18. 26. 36) in a given number of dimensions (t = 1. 2. 3,
4. 5), and then added error at five levels (from a unit normal distribution with
standard deviations ¢. of 0. 0.0625, 0.1225.0.2550 and infinity) to each co-ordinate
in this case. For each combination of points. true dimensionality and error level. a
number of dissimilarity matrices was produced and these were scaled in five
through one dimensions. The resulting stress, values were averaged and put
together to produce a set of diagrams (nomographs) such as those reproduced in
Figure 3.17.

This set of four diagrams refers to configurations of 36 points with true
(generating) dimensionality of 1 (top left hand diagram), 2 (top right), 3 (bottom
left) and 4 (bottom right). (Similar diagrams exist for from-12 to 36 points). Within
each diagram there are five ‘curves’—one for each dimensionality m in which the
configurations were actually scaled. Each curve joins the average stress, values of
the configurations as the level of added error is increased. For exampile, (see the top
right hand diagram) in a true dimensionality of 2 and with no added error, the
configurations of 36 points scaled in two. three. four and five dimensions yield a
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Figure 3.17 Stress of a recovered configuration in spaces of varying dimensionality
as a function of the error level in a known undelying configuration
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Figure 3.18 Spence-Graef M-SPACE analysis

zero-stress, solution, whilst those scaled in one dimension have a stress, value of
about 0.32 on average. At each level of error, the stress , of the solutions in two
through five-dimensions become more separated—and it is the difference between
these values which will be important when the diagrams are used to interpret actual
scaling results.

The idea of M-sPACE is simply to compare the actual set of stress , values which
the user has obtained with the results of the Spence-Graef simulations. in order to
assess the likely ‘true’ dimensionality, and the probable amount of error. An
example will help illustrate the process. Coxon and Jones (1979, pp. 73-4) scaled a
set of averaged pairwise similarity ratings referring to 16 occupations. obtaining
stress; values of: 0.024, 0.030, 0.043, 0.060 and 0.100 for solutions in 5, 4. 3,2and !
dimensions. This ‘actual set’ of stress values was then compared to Spence and
Graef’s results obtained from scaling random configurations of 16 points. The M-
SPACE procedure compares the actual set of stress, values with each ‘true
dimensionality’ diagram in turn, finding the point at which the actual set fits the
simulated results most closely by locating the point along the error axis at which
the actual stress; values conform most closely to the simulated ones. As a result.
the user is given the error level to which the actual set of stress, values best
corresponds by reference to each ‘true’ dimensionality in turn. Usually the fit will
be best in one particular ‘true’ dimensionality, and this information is taken to
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mean that this is the most likely underlying dimensionality of the user’s data. To
our surprise, the use of M-SPACE on these data strongly suggested a ‘true’ one-
dimensional (or possibly a two-dimensional) solution and the relevant M-SPACE
nomograph for true dimensionality of 1 is presented in Figure 3.18: the ‘actual set’
fits best the true dimensionality of 1 for an error level of 18 per cent, (on any
account a low level of error. and by far the best fitting in any of the true
dimensionalities). M-sPACE should not be used uncritically as an automatic detector
of ‘real’ dimensionality: if anything, it tends to underestimate dimensionality, and
the authors mention a number of other cautions (Spence and Graef 1974, p. 3).

The results of other simulation studies point in the same direction and confirm
Shepard’s (1966) intuitions about the number of points and dimensions needed to
produce a stable solution. Klahr (1969) shows, for example, that stress values of
sets of randomly generated dissimilarities for between 6 and 8 points in three-
dimensions yield ‘good’ solutions according to Kruskal’s original rules!
Fortunately. a small increase in points rapidly diminishes the likelihood of such a
mistaken inference. Stenson and Knoll's (1969) study is interesting mostly for the
evidence it provides of the effect on stress, of the choice of primary or secondary
approach to ties. To estimate this. he ties dissimilarity values for 30 points
‘coarsely’ (into 10 approximately equal sets of tied values) and ‘finely’ (into 50 such
sets). Surprisingly the fineness of grouping has little apparent effect on stress,
values. Wagenaar and Padmos (1971) were the first to provide a realistic and
systematic investigation of the effect of adding error into the process of generating
the dissimilarity matrices. and their results here have been generalised by Spence
and Graef.

3.7.3 Other approaches to assessing dimensionality, stability and metric
recovery . )

_ From the practice and lore of Tactor analysis come other approaches to determine
the likely dimensionality of the data. The most famous is the ‘scree test’, or ‘elbow
test’. The recommended strategy here is to perform the scalings in a high number of
dimensionalities. stepping down to a uni-dimensional scaling. The stress values are
then charted against the dimensionality, and joined together to form a polygon. Ifa
noticeable bend or ‘elbow™ occurs. indicating that the improvement in fit is not
significantly altered by the addition of a further dimension, then the lower-
dimensional solution is to be preferred. A common variant of this rule is ascribed
(probably unfairly) to Shepard and often referred to as "Shepard’s Law’: if a
solution exists. it probably exists in two dimensions. Extended a little, such a rule
contains a good deal of sense. Uni-dimensional solutions are quite often degenerate
and unable to portray a situation that sometimes occurs—that the points in fact
form a non-linear. but uni-dimensional sequence such as a "horseshoe’ (see Kendall
1971a. pp. 224-7 and 4.6 below). So even if a uni-dimensional solution i1s likely. 1t
is prudent to scale in two dimensions. A two-dimensional solution is the easiest to
comprehend because it can be readily assimilated. and whereas a third dimension
can be relatively easily visualised. higher dimensionalities, can not. ‘If a solution
exists, it probably exists in two dimensions; if it doesn't then it certainly exists in
three’, might be a reasonable extension to Shepard’s law.

As we have seen. Shepard (1966, p. 288) shows that non-metric constraints, if
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imposed in sufficient number, begin to act like metric constraints. That is.
information on the pairwise ordering of stimuli is normally sufficient to constrain
the location of points in a configuration to such an extent that the distances
between them are virtually fixed. The key word is ‘normally’. In fact, the number of
data need to exceed the number of points times the number of dimensions to a
considerable degree before the configuration is really stable. Again. Monte Carlo
studies have been used extensively to see how well non-metric scaling can recover
known configurations (see especially Young 1970 and Shepard 1966). The results
are conclusive: so long as the number of order relations in the data exceed the
number of co-ordinates of the solution by at least a factor of 2 tand so long.
obviously. as there is not an overwhelming amount of error). non-metric analysis
can recover the correct underlving configuration (or. rather. the distances)
extremely accurately. For ‘true’ dimensionality of two. the extent of metric
recovery has been studied extensively. and the results of Shepard (1966. p. 299) still
hold:

While the reconstruction of the configuration can occasionally be quite good for
a small number of points. it is apt to be rather poor (for p less than eight. say).
As p increases, however, the accuracy of the reconstruction systematically
improves until even the worst of ten solutions becomes quite satisfactory with 10
points. and, to all practical purposes. essentially perfect with 15 or more points.

But. as he later points out (Shepard 1974, p. 395). the lesson has not always been
well heeded by users:

A distressing number of two- and even three-dimensional solutions have been
published in which. despite the inclusion of only six to eight objects. no evidence
is provided that the configuration has a reasonable degree of metric determinacy
and is not a prematurely arrested case of convergence toward a degeneracy.

A footnote should be added to these studies of recoverability and stability of
MDS solutions which is of particular importance to users who wish to have
subjects judge a large number of stimuli, and is also of general importance in
interpreting a configuration:

Information about larger distances/dissimilarities is far more crucial in ensuring
satisfactory recovery of metric information than is information about medium or
smaller dissimilarities; and

small distances in the solution are far less stable than large ones. implying that
‘global’ information (between distant points or clusters of points) is a more reliable
basis for interpreting a solution than ‘local’ information between highly proximate
points.

These issues are given extended treatment in an important study by Graef and
Spence (1979).
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APPENDIX A3.1 COMPARISON OF MEASURES OF FIT
BETWEEN DATA AND SOLUTION
USED IN NON-METRIC MDS

1 All measures of fit used in the basic model compare a set of disparities (ratio-
level quantities which are a function of the data, d = f(6;,), which are monotonic
for ordinal data and linear for metric or interval data with the ratio-level distances.
d;. Two forms of comparison are used:

(i) the difference (dy — dj), which forms the basis of badness-of-fit measures,
since the greater the discrepancy between a solution and the data, the greater will
be the differences; and

(ii) the scalar product (d;d3), which forms the basis of goodness-of-fit
measures. since the greater the covariance (or the less the angular separation)
between data and the solution, the greater will be the scalar products.

2 The basic measure of goodness-of-fit used in non-metric programs emanating
from the Bell Laboratories is stress. and in particular (normalised) stress,, based
upon Kruskal’s BFMF disparities, d j« These and alternative measures are dealt
with in sections 3.3 and 3.5.2 and are extensively discussed in Kruskal and Carroll,
1969. - :

3 The measures used by Lingoes (Michigan), Guttman (Israel) and Roskam
(Nijmegen) include stress measures (often based upon Guttman’s rank-image
disparities. 4% ), but also include a number of less familiar measures. In particular:

(@ Mup) =Y dudj

Jzaz(a))

(Goodness of fit, varies between —1 and +1)

This measure is akin to the Pearsonian correlation coefficient. It is independent of
the scale of both the distances and the disparities if the data are scaled by a ratio
transformation, as in the metric MDS model (with the logarithmic option)
implemented as MRscAL in the MDS(X) series.

If the data are scaled by a linear transformation, as in MRSCAL (under the linear
option), then mu is formally identical to the Pearsonian correlation coefficient r. It
may also be used for monotone transformations. but it is not entirely clear whether
it is dependent in this case on the scale of the disparities.

(b) Alienation (K) = \/ (1 — i) (Badness of fit, varies between 0 and 1)

This measure is akin to stress, and in some cases is identical to it. In any event, K is
strictly monotonic with stress,. The coefficient measures the extent of residual
variance from the fitted regression.

(c) (Normalised) Phi (¢) = (Raw Stress/(2 x NF 1))
= Z (djk - d?k)/z Z dfk

(Badness of fit, varies between 0 and 1)
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This measure is also akin to stress,, but differs in the scaling factor—twice that of
stress;—and in the fact that the index is not reduced by its square root. It differs
from the coefficient of alienation K. in being based upon the difference. rather than
the scalar product. of the distances and the disparities.

Strictly speaking, any of these three measures may be used either with Kruskal's
monotone regression disparities d,. or Guttman's rank images d%. although by
convention they are normally used with the latter.

4 Relation berween fit measures
Relationships between the fit measures depend most importantly on whether
Kruskal's d or Guttman’s d* quantities are being used. (In reporting measures of
fit, users should always indicate which fitting quantities are being referred to and
MDS(X) programs indicate the referent quantities as d-hat and d-star
respectively.) In general. for any of these badness-of-fit measures. a measure based
on d* will be higher (indicating worse fit) than the same measure based on J. since
the former attempts to preserve strong monotonicity and the latter preserves only
weak monotonicity with the data.

This can best be exemplified by relating various measures to . which represents
the cosine of the angle separating the distances and the fitting quantities. d°. in the

measurement space (see Roskam 1969. p. 13). =

Fitting quantities (disparities)

Measure Kruskal’s d (weak) Guttman’s d* (strong)
u o cos (d. d) cos (d, d*)
Stress, (5] (- g V2l -
Phi (1 — p?) (1 - p
K (Alienation) (= S)) J __‘#:)

Other useful relationships are as follows:

Alienation and phi () K=1-(1-¢r=0=4

Alienation and stress; (i) If d is used. K = S,. and if ¢* is used.
K =S8,1 - (S,
Phi and stress, (iii) ¢ = 1§°

APPENDIX A3.2 CREATION OF THE INITIAL
CONFIGURATION

A3.2.1 User-provided configuration

Most MDS programs give the user the option of providing an initial configuration.
Usually, this will be a configuration thought to be close to the final configuration.
either on a priori grounds or it will be a configuration from a similar study.
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A3.2.2 Random or arbitrary start

The initial configuration may be a random start, formed simply by allocating
random numbers to the p x r co-ordinates. or it may be an arbitrary start,
positioning the points regularly at unit intervals along the dimensions of the initial
configuration, as in the following 2-dimensional case, where they form a regular L-

shaped configuration:

Dimension )
Stimulus I II
F X
A 1 0
B 0 1 DX
C 2 0
D 0 2 B X
E 3 0
F 0 3 . y . '
0 A C E
(a) Co-ordinates (b) Corresponding Configuration

In general. such a configuration can be produced from the series:

Dimension
Stimulus I I 111 e r
A A 0 0 0
B g 0 1 0 . 0
C 0 0 1 o 0
{r th) 0 0 0 1
(r + 1th) 2 0 0 0
(r + 2) 0 2 0 0
2 x rth) 0 0 0 2
3 0 0 0
0 3 0 0

...and so Vforth.

Such a configuration ensures that the co-ordinates are orthogonal. no matter
what the dimensionality. Usually, the configuration is also centred and normed. It
is the most common method used by Kruskal to create an initial configuration. It
has the advantage that it in no way prejudices or influences the shape of the final
configuration, but it is known to make the iterative procedure especially prone to
sub-optimal (local minimum) solutions (Lingoes and Roskam 1973, p. 69) and
should generally be avoided.
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A3.2.3 Metric initial configuration

The data are treated as estimates of Euclidean distances, converted into scalar
products, and the eigenvectors corresponding to the first r largest eigenvalues are
used as the best (least squares) estimate of an r-dimensional initial configuration.
This option is identical to Torgerson’s (1958, pp. 254-9) classic method of metric
MDS (see Appendix AS5.2) and is closely allied to principal components analysis
and Eckart-Young singular value decomposition. It generally produces a fairly
good initial estimate of the solution, unless the configuration of points forms some
highly non-linear shape (cf. Arabie and Boorman 1973). It is the strategy adopted
by the programs Torsca (Young 1968) and kysT (Kruskal et al. 1973) to form the
starting configuration.

A3.2.4 Quasi non-metric initial configuration
Here the data are first reduced to rank order, thereby jettisoning all non-ordinal
information. From these data a ranks matrix. C. is formed:

I — pulr (j = k: off-diagonal elements)

Cjk =

1+ p,.,/r (j = k: diagonal elements)

1
where pj is the rank number -of dissimilarity ¥, and r is the maximum rank
number. ‘ ‘

The entries of C are similar to scalar products, and are a strict monotone function
of data.

A principal components analysis is performed on C, dropping the first (constant)
eigenvector, C = FF’, and F is then the Guttman-Lingoes-Roskam initial
configuration (see Roskam 1975, A7-8; Lingoes and Roskam 1973, pp. 17-19).
Like the metric initial configuration, it will be quite close to the final configuration,
and so will greatly reduce the number of iterations. Unlike the metric start. the
quasi non-metric configuration has the advantage of using only ordinal
information, and cannot therefore capitalise on possibly irrelevant quantitative
(interval level) properties of the data.

In the MDS(X) series, MiNissa (and all programs in the Guttman-Lingoes-
Roskam tradition) uses the quasi non-metric method of producing an initial
configuration, and also allows users to input an initial configuration of their
choice, if preferred. Although the quasi non-metric initial configuration certainly
seems to guard best against suboptimal solutions. users are strongly advised to
check solutions by using several different initial configurations.



