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THE BASIC MODEL

3 Multidimensional scaling by optimizing
goodness-of-fit to a non-metric hypothesis*
Joseph B. Kruskal

The problem of multidimensional scaling, broadly stated, is to find =
points whose interpoint distances match in some sense the experimental
dissimilarities of n objects. Instead of dissimilarities the experimental measure-
ments may be similarities, confusion probabilities, interaction rates between
groups, correlation coefficients, or other measures of proximity or dissociation
of the most diverse kind. Whether a large value implies closeness or its
opposite is a detail and has no essential significance. What is essential is that
we desire a monotone relationship, either ascending or descending, between
the experimental measurements and distances in the configuration.

We shall refer only to dissimilarities and similarities, but we explicitly
include in these terms all the varied kinds of measurement indicated above.
We also note that similarities can always be replaced by dissimilarities {for
example, replace s,; by k — s;,;). Since our procedure uses only the rank
ordering of the measurements, such a replacement does no violenee to the
data.

According to Torgerson ([17], p. 250), the methods in use up to the time
of his book follow the general two-stage procedure of first using a one-dimen-
sional scaling technique to convert the dissimilarities or similarities into
distances, and then finding points whose interpoint distances have approxi-
mately these values. The statistical question of goodness of fit is treated
separately, not as an integral part of the procedure. Despite the success these
methods have had, their rationale is not fully satisfactory. Due to the nature
of the one-dimensional scaling techniques available, these methods either
accept the averaged dissimilarities or some fixed transformation of them as
distances or else use the variability of the data as a critical element in forming
the distances.

A quite different approach to multidimensional! scaling may be found
in Coombs [5]. However, its rationale is also subject to certain criticisms,

A major advance was made by Roger Shepard [15a, b], who introduced
two major innovations. First, he introduced as the central feature the goal
of obtaining a monotone relationship between the experimental dissimilarities
or similarities and the distances in the configuration. He clearly indicates that
the satisfactoriness of a proposed solution should be judged by the degree to

*reprinted from Psychometrika, 29, 1964, pp. 1-27
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which this condition is approached. Monotonicity as a goal was proposed
earlier [for example, see Shepard ([14], pp.333-334) and Coombs ([3], p. 513)},
but never so strongly. Second, he showed that simply by requiring a high
degree of satisfactoriness in this sense and without making use of variability
in any way, one obtains very tightly constrained solutions and recovers
simultaneously the form of the assumed but unspecified monotone relation-
ship. In other words, he showed that the rank order of the dissimilarities is
itself enough to determine the solution. (In a later section we state a theorem
which further clarifies this situation.) Thus his technique avoids all the
strong distributional assumptions which are necessary in variability-depend-
ent techniques, and also avoids the assumption made by other techniques that
dissimilarities and distances are related by some fixed formula. In addition, it
should be pointed out that SBhepard deseribed and used a practical iterative
procedure for finding his solutions with the aid of an automatic computer.

However, Shepard’s technique still lacks a solid logical foundation. Most
notably, and in common with most other authors, he does not give a mathe-
matically explicit definition of what constitutes a solution. He places the
monotone relationship as the central feature, but points out ([15a), p. 128)
that & low-dimensional solution cannot be expected to satisfy this criterion
perfectly. He introduces a measure of departure § from this condition [15a,
pp. 136-137] but gives it only secondary importance as a eriterion for deciding
when to terminate his iterative process. His iterative process itself implies
still another way of measuring the departure from monotonicity.

In this paper we present a technique for multidimensional scaling,
similar to Shepard’s, which arose from attempts to improve and perfect his
ideas. Our technique is at the same statistical level as least-squares regression
analysis. We view multidimensional scaling as a problem of statistical fit-
ting—the dissimilarities are given, and we wish to find the configuration
whose distances fit them best.

“To fit them best” implies both a goal and a way of measuring how close
we are to that goal. Like Shepard, we adopt a monotone relationship between
dissimilarity and distance as our central goal. However, we go further and
give a natural quantitative measure of nonmonotonicity. Briefly, for any
given configuration we perform & monotone regression of distance upon
dissimilarity, and use the residual variance, suitably normalized, as. our
quantitative measure. We call this the stress. (A complete explanation is given
in the next section.) Thus for any given configuration the stress measures how
well that configuration matches the data.

Once the stress has been defined and the definition justified, the rest of
the theory follows without further difficulty. The solution is defined to be the
best-fitting configuration of points, that is, the configuration of minimum
stress.

There still remains the problem of computing the best-fitting configura-
tion. However, this is strictly a problem of numerical analysis, with no
psychological implications. (The literature reflects considerable confusion
between the main problem of definition and the subsidiary problem of compu-
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tation.) In a companion paper [12] we present a practical method of computa-
tion, so that our technique should be usable on many automatic computers.
(A program which should be usable at many large computer installations is
available on request.)

In our two papers we extend both theory and the computational tech-
nique to handle missing data and certain non-Euclidean distances, including
the city-block metrie. It would not be difficult to extend the technique further
so as to reflect unequal measurement errors.

We wish to express our gratitude to Roger Shepard for his valuable
discussions and for the free use of his extensive and valuable collection of data,
obtained from many sources. All the data used in this paper come from that
collection.

The Stress

In this section we develop the definition of stress. We remark in advance
that since it will turn out to be a “residual sum of squares,” it is positive, and
the smaller the better, It will also turn out to be a dimensionless number, and
can conveniently be expressed as a percentage. Our experience with experi-
mental and synthetic data suggests the following verbal evaluation.

Stress Goodness of fit

209, poor

109, fair
5, good

23% excellent
0% “perfect”

By “perfect” we mean only that there is a perfect monotone relationship
between dissimilarities and the distances.

Let us denote the experimentally obtained dissimilarity between objects
i and j by &, . We suppose that the experimental procedure is inherently

symmetrical, so that 3;; = 8,; . We also ignore the self-dissimilarities &;: .
Thus with n objects, there are only n{n — 1)/2 numbers, namely §,; for
t<jit=1-,n~1;5=2 ---,n Weignore the possibility of ties; that

is, we assume that no two of these n{n — 1)/2 numbers are equal. Later in the
paper we will be able to abandon every one of the assumptions given above,
but for the present they make the discussion much simpler. Since we assume
no ties, it is possible to rank the dissimilarities in strictly ascending order:

IR O P A TP N T

Here M = n{n — 1}/2.

‘We wish to represent the n objects by n points in {-dimensional space.
Let us call these points z, , - - - , 2, . We shall suppose for the present that we
know what value of { we should use. Later we discuss the question of deter-
mining the appropriate value of £, (Formally and mathematieally, it is possible
to use any number of dimensions. The appropriate value of ¢ is a matter of
scientific judgment.)
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Let us suppose we have n points in idimensional space. We call this a
configuration. Our first problem is to evaluate how well this configuration
represents the data. Later on we shall want to find the configuration which
represents the data best. At the moment, however, we are only concerned with
constructing the criterion by which to judge configurations. To do so, let d;;
denote the distance from z; to x; . If x, is expressed in orthogonal coordinates

by

T, = (xilj"‘ s Liay ° }x!")j

\/Z (e — 250)°. *
=1

In order to see how well the distances match the dissimilarities, large
with large and small with small, let us make a scatter diagram (Fig. 1). There
are M stars in the diagram. Each star corresponds to a pair of points, as
shown. Star (7, 7} has abscissa d;; and ordinate §;; . This diagram is funda-
mental to our entire discussion. We shall call it simply the scatler diagram.

Let us first ask “What should perfect match mean?” Surely it should
mean that whenever one dissimilarity is smaller than another, then the
corresponding distances satisfy the same relationship. In other words, perfect
mateh should mean that if we lay out the distances d.; in an array

then we have
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PERFECT ASCENDING RELATIONSHIP
STRESS =0

DISSIMILARITY, § =

DISTANCE, d =

Ficurz 2

dl‘u’n 3 d-’-:’- ) dl‘u‘- y T do’u:‘u’

corresponding to the array of dissimilarities given above, then the smallest
distance comes first, and the other distances follow in ascending order. In
terms of the scatter diagram, this means that as we trace out the stars one by
one from bottom to top, we always move to the right, never to the left. Thig
fails in Fig. 1, but holds in Fig. 2.

To measure how far a seatter diagram such as Fig. 1 departs from the
ideal of perfect fit, it is natural to fit an asecending curve to the stars as in Fig.
3 and then to measure the deviation from the stars to the curve. This is
precisely what we do. However, the details are of critical importance.

Should we measure deviations between the eurve and stars along the
distance axis or along the dissimilarity axis? The answer is “‘along the distance
axis.” For if we measure them along the dissimilarity axis, we shall find

ourselves doing arithmetic with dissimilarities. This we must not do, because
we are committed to using only the rank ordering of the dissimilarities.

To say the same thing in a different way, we wish to measure goodness of fit
in such a way that monotone distortion of the dissimilarity axis will not
have any effect. This clearly prevents us from measuring deviations along
the dissimilarity axis.
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Having decided to measure the deviations along the distance axis, we
next see that we do not actually need the whole eurve, but only M peints on
it, as shown in Fig. 4. The rest of the curve does not enter into the calculation
of deviations. We may continue to talk of fitling a curve, but all we mesan is
fitting the points.

Each point we fit shares the value of & with the corresponding star, but
has its own value of d. If a star is located at (d:; , 8:;), then we denote the
corresponding point by (d; , 8;;). Thus fitting the curve means no more than
fitting the values of d;; .

We realize of course that the numbers d;; are not distances. There is no
configuration whose interpoint distances are d;; . The d.; are merely a mono-
tone sequence of numbers, chosen a3 “nearly equal” to the d.; as possible,
which we use as a reference to measure the nonmonotonicity of the numbers
d.; . To simplify the discussion, we delay the precise definition of d;; for a
little while,

The fitted curve was of course intended to be ascending. Phrased in
terms of the M points (d,, , 3;;) which in effect constitute the curve, this
means that as we trace out these points from bottom to top, we never move
to the left but only to the right. Phrased in terms of the numbers d,; , it means
that when they are arranged in the standard order
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then each d.; is greater than or equal to the one before it, namely

diiy S diyy, S diis & - S diin (Mon).

‘Whenever any numbers satisfy these inequalities, we shall say that they are
monofonically related to the d;; .

Now suppose we have the fitted values d;; , which satisfy (Mon) of
course. Then the horizontal deviations are d;; — d,; . How shall we combine
these many individual deviations into a single overall deviation? Fellowing a
time-honored tradition of statistics, we square each deviation and add the
results:

raw stress = S* = 2 (di; — d;,).
i<i
Except for normalization, this is our measure of goodness of fit. It measures
how well the given configuration represents the data. And very prosaic
looking it is too—nothing more than the old familiar “residual sum of
squares” associated with so many fitting techniques, It is speeial in only two
ways: first, in the use of distance axis deviations; second, because of the fact
that the fitted curve is chosen not from a * parametric” family of curves, such
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as polynomials or trigonometric series, but from a “‘nonparametric” family
of curves, namely, all monotone ascending curves. ‘

The raw stress still lacks certain desirable properties. Most notably,
while it is clearly invariant under rigid motions of the configuration (rotation,
translations, and reflections), it is not invariant under uniform stretching and
shrinking of the configuration. In other words, if we stretch the configura-
tion z, , +-- , &, by the factor k to the configuration kz, , «-- , kz, , that is,
replace each point (i, + - , #::) by (ki , -+- , kz..), then the raw stress
changes. In fact, it changes from S* to k*S* because the numbers J.—; also
change by the factor k. Surely sheer enlargement of a configuration should
not change how well it fits the data, for the relationships between the dis-
tances do not change. An obvious way to cure this defect in the raw stress is
to divide it by a scaling factor, that is, a quantity which has the same quad-
ratic dependence on the scale of the configuration that raw stress does. Such a

scaling factor is easily found. We use

T = > &, .

+<f

Thus
S* E (dii - dn‘)z

T > dy
<y

is & measure of goodness of fit which has all the desirable properties of S*
and in addition is invariant under change of scale, that is, uniform stretching’
or shrinking. This is the normalization. (Another plausible scaling factor is
the variance of the numbers d.; . We plan to compare these scaling factors
elsewhere. )

Finally, it is desirable to use the square root of this expression, which is
analogous to choosing the standard deviation in place of the variance. Thus
our definition of the normalized stress is

t S \/§ % @ — 4’
i<

Again we emphasize that this measures how well the given configuration
represents the data. Smaller stress means better fit. Zero stress means “per-
fect” fit in our special sense.

Now it is easy to define the d,; . They are the numbers which minimize §
{or equivalently, 8*) subject to the constraint (Mon). Thus we may condense
our entire definition of stress into the following formula.

Sz, , -+, &) = stress of the fixed configuration =z, , --- , z.

~ ;3 1 2
min Z (dii _-2 dﬂ'i) .
numbera 3(1 Z dl’i

satisfying (Mon)

We point out that this minimization is aceomplished not by varying a trial
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get of values for the d;; , but rather by a rapid, efficient algorithm which is
described in detail in the companion paper [12].

Now that we have defined the stress, we have a quantitative way of
evaluating any configuration. Clearly the configuration we want is the con-
figuration whose stress is & minimum, for this is the configuration which
best fits the data. Thus we define

stress in ¢ dimensions == min Sz, <o, T
all t-dimensional
configuraticns

and we define the best-fitting configuration to be the one which achieves this
minimum stress.
How do we find the minimum-stress configuration? We may answer this

question at three levels, At the intuitive level, we may describe the procedure
as one of successive approximation. We start with an arbitrary configuration,
move all the points a little so as to improve it a bit, and then repeat this
procedure until we reach the configuration from which no improvement is
possible. Typically, anywhere from 15 to 100 such steps are necessary to reach
the final configuration. Roughly speaking, we move points x; and z; closer
together if d.; < d; , and apart in the opposite case, so as to make d;; more
like d;; . Of course, each point z; is subject to many such motions at once,
and usually these will be in partial confliet.

At the theoretical level, we see that our problem is to minimize a function
of many variables, namely S(xl , * =+, Z.). Actually the stress S is a function
of nt variables, as each vector z; has ¢ coordinates. The problem of minimizing
a funection of many variables is a standard problem in numerical analysis,
and to solve it we adopt a widely used iterative technique known as the
“method of gradients’” or the “method of steepest descent.”

Finally, at the practical level, we give in a companion paper [12] all the
important details necessary to perform this iterative technique sueccessfully,

An Ezample

To illustrate these ideas, we use synthetic data based on a 15-point
configuration in the plane. Our configuration is shown by the -4 signs in
Fig. 11. It was used by Shepard ([15b], p. 221) and taken by him from Coombs
and Kao ({6], p. 222). To ereate the 105 dissimnilarifies we applied 2 monotone
distortion to the interpoint distances, and then added independent random
normal deviates to the distorted distances. Specifically,

8:;; = —(0.9) exp [—(1.8)d;;] — 0.1 + 2y,

where 4., 18 normal with mean 0 and standard deviation 0.01.

We analyze these synthetic data in two dimensions (¢ = 2). The arbi-
trary starting configuration is shown by numbered circles in Fig. 5. (This
and many later figures were created automatically by the computer with the
aid of the General Dynamics Electronics Model 8C-4020 Highspeed Micro-
film Printer.) The lines show the motion of the first iteration to the next,
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slightly better configuration. The stress of the first configuration is 47.3%,.
After one iteration it is down to 44.3%. After ten iterations the configuration
has become that in Fig. 6, with stress 2.929,. (For most practical purposes
the calculation could stop here, as the configuration hardly changes after
this.) After fifty iterations the minimum-stress configuration shown in Fig. 7
is reached; its stress is 2.48%,. The scatter diagrams of these three eonfigura-
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tions arc shown in Figs. 8 9, and 10. The monotone distorting function has
been accurately recovered, and is displayed in the last of these scatter dia-
granis. '

To show how accurately the original configuration has been recovered,
we display in Fig. 11 the recovered configuration together with the original
configuration of Coombs and Kao. The recovered configuration has been
reflected and rotated by eye into best apparent agreement with the original
configuration for this purpose. Sinee the angular position of the recovered
configuration is quite arbitrary, this is entirely legitimate.

Another obvious way of measuring how npearly alike the two configura-
tiong are is to compare the distances d}’ within one configuration with the
distances d{¥ within the other. Corresponding distances differ typically by
3.169%;. More precigely, the expression

T @y =4y
Z<j (d.f}’ T df_g})z has the value 0.0316.
2

i<y
How Many Dimensions?
So far we have assumed that the number of dimensions to be used is

fixed and known. In practice, this is seldom the ease. The final determination
of how many coordinates to recover from the data rests ultimately with the
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scientific judgment of the experimenter. However,
aids.
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The analysis should be done in several dimensions, and a graph plotted
to show the dependence of minimum stress on dimension. Of course, as ¢
increages, minimum stress decreases. For ¢t = n — 1, the minimum stress is
always 0. (Perfect match can always be managed with n points inn — 1
dimensions.) It is reasonable to choose a value of ¢ which makes the stress
acceptably small, and for which further inerease in ¢ does not significantly
reduce stress. Good data sometimes exhibit a noticeable elbow in the curve,
thus pointing to the appropriate value of &

A second criterion lies in the interpretability of the coordinates. If the
t-dimensional solution provides a satisfying interpretation, but the (¢ + 1)-
dimensional solution reveals no further structure, it may be well to use only
the {-dimensional solution, A third criterion can be used if there is an independ-
ent estimate of the statistical error of the data. The more aceurate the data,
the more dimensions one is entitled to extract.

To study the guestion of dimensionality, we first use synthetic data.
Separate sets of ten, fifteen, and twenty random poinis in six dimensions were
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Fioure 9
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chosen. The actual distances were used as dissimilarities 3,; . Fig. 12 shows
how stress varies with dimension for these three sets of data. A perfect match
is obtained in gix dimensions. The ten-point curve displays a distinet elbow,
which strongly suggests the use of three dimensions. Of course, with error-
free synthetic data, further coordinates may be successfully extracted, but
even with excellent experimental data this curve would make the uze of more
than three dimensions quite dubious. (Examination of the original configura-
tion of ten points shows that by chance it lies very nearly in a three-dimen-
gional subspace.) The fifteen- and twenty-point curves are much less clear.
If we obtained curves similar to these but without perfect fit in six dimensions
from real data, then three dimensions would seem advisable, four would also
seem reasonable, and five might be justified by other considerations, such as
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good interpretability or independent indications of very low variability in
the data.

Let us illustrate these ideas with data from Indow and Uchizono [9].
(The dissimilarities themselves did not appear in the paper. We thank Pro-
fessor Indow for providing them.) They obtained direct judged dissimilarities
between 21 colors of constant brightness, using an ingenious technique. It
may seem obvious that the analysis should be done in two dimensions.
However, there is the possibility that colors of constant brightness may be
best described as lying on a curved two-dimensional surface. If this should be
the case, we would want ¢ = 3. In any case, it is instructive to see what hap-
pens. Fig. 13 shows the dependence of stress on dimension. The elbow in the
curve at dimension 2 confirms our natural expectation that two dimensions
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are appropriate, but does not eompletely rule out the possibility that three
dimensions might become appropriate with more comprehensive data of the
same sort. Figs. 14 and 15 show the configuration and the scatter diagram
when the dimension is two. The configuration, which resembles the one given
by Indow and Uchizono, corresponds roughly to the Munsell diagram for the
21 colors, but with considerable stretching and shrinking in various places,
The scatter diagram, with a stress of 7.27%, would be classified as fair-to-good.

A very similar experiment by Indow and Kanazawa [10] supplies a
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) Fraure 16
Secatter Diagram for 24 Colors of Varying Brightness (Indow and Eanazawa Data)

second illustration. In this experiment 24 colors of differing brightness were
used. Fig. 13 fits well with our expectation that three dimensions are appro-
priate. The reason that the stress is fairly small in two dimensions is that
after rotation to principal axes the third recovered coordinate varies over
only half the range of the first two coordinates. This third coordinate corre-
sponds approximately to brightness. The scatter diagram in three dimensions
(Fig. 16) has a stress of 3.67%, and would be classified as fair-to-excellent.
Our configuration in three dimensions resembles that obtained by Indow and

Kanazawa.
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Our third illustration is based on the confusions between 36 Morse Code
symbols from E. Rothkopf [13]. An analysis of these and other data, using our
technique and our computer program, appears in Shepard [16]. We have
calculated the stress of the best-fitting configuration in one, two, three, four,
and five dimensions (Fig. 17). The figure does not clearly show the number of
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dimensions needed, but suggests that two is the minimum and four the maxi-
mum. However, Shepard [16] found a very lucid and convincing interpreta-
tion for the two-dimensional solution, while he could extract no further
structure from the three-dimensional solution. Thus he successfully extracted
two coordinates, but expressed some doubt about the value of extracting a
third.

Missing Data, Nonsymmetry, and Ties

Suppose some of the dissimilarities are missing, either by error or by
design. (When n is large, say n = 50 or 60, there are a great many dissirailari-
ties. It may be adequate and economical to obtain data covering only some
of them.) How shall we measure stress? It seems natural to generalize the
definition given before by simply omitting, both in the numerator §* and
the denominator T, the terms which correspond to the missing dissimilarities.
We accept this generalization, and incorporate it throughout the rest of
the paper.

This idea may be considered simply as a speecial case of weights being
attached to the various dissimilarities to reflect varying uncertainties of
measurement. However, we shall not in this paper further pursue this notion
of weights, nor certain still more general weighting schemes which come
easily to mind.

Suppose that the measurement procedure is not inherently symmetrical,
so that §;; = §;; . If we are willing to assume that 5,; and §;; are measure-
ments of the same underlying quantity, and differ only because of statistical
fluctuation, then two natural procedures are open to us. One is to form
symmetrical measurements by averaging §;; and §;; . A more interesting
procedure is to generalize the definition of stress by letting the summations
for 8* and T* extend over all 7 > j (rather than ¢ < j). Also in some situations
the self-dissimilarities 3,; may be meaningful, and one may wish to let the
summations include the cases ¢ = j.

Suppose there are ties, that is, dissimilarities which by chance are pre-
"¢isely equal to one another. The reader will recall that the numbers d;; , used
in our formula for the stress, were defined as those numbers which minimize
S* gubject to the constraint that they are monotonely related to the dissimi-
larities §;; . How shall we interpret this constraint in the presence of ties?

There are two approaches. One, which we call the primary approach
because it seems preferable, is to say that when &;; = 8,, we do not care which
of d;; and d,; is larger nor whether they are equal or not. Consequently we
do not wish to downgrade the configuration if d,; # di; , and hence do not
wish the stress to reflect the inequality. The way we accomplish this is by
not constraining d;; and d.: . Consequently the terms (d;; — d.)? and (d; —
d;)? are permitted to be zero, except as prevented by other constraints. Thus
in case of the primary approach our only constraints on the d:; are these,
whieh are equivalent to (Mon),
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(I) Whenever 6,‘; < 6;‘[ , then (i” é C?“ .

The secondary approach is to say that 8.;; = 8. is evidence that d;; ought to
equal d,: , and to downgrade a configuration if this is not so. Consequently
the stress ought to reflect this inequality. The way we accomplish this is by
imposing the constraint d;; = d;; . Then if d;; # d, , the terms (d;; — d;,)?
and (di; — d\;)* cannot be zero and reflect our displeasure at the inequality
of d.; and d,, . Thus in the secondary approach to ties, the constraints on the
ci,-,- are as follows.

(1D {Whenever 8 < 8, then d,; = d., .

Whenever &,; = 8,;, then di; =d.; .

The place in which the difference between these two approaches actually takes
effect is deep inside the algorithm for finding the d,, . Details are given in the
companion paper [12]. We remark that it is very simple to build optional use
of both approaches into & computer program, and we have done this.

Non-Euclidean Distance

We plan to discuss elsewhere the full degree to which our procedure may
be generalized. In principle, there appears to be no reason why the definition
of stress could not be used with almost any kind of distance function at all.
However, computing the minimum-stress configuration with more general
distance functions may offer difficulties.

For a certain class of non-Euclidean distance functions our procedure is
quite practical, and has been fully implemented in our computer program.
The numerical techniques we describe below fully cover this generalization.

We refer to distance functions generally known in mathematics as the
L,-norms or l,-norms, but occasionally referred to as Minkowski r-metrics.

For any r > 1, define the r-distance between points ¢ = (%, ---, z.) and

Y = (’Un"' sy!)tObe

d(x,y) = [i) 2o — v, I']Ur.

=1

This is just like the ordinary Euclidean formula except that rth power and
rth root replace squaring and square root. Then d. is a genuine distance. In
particular, it satisfies the triangle inequality, namely

d.(z,2) = d.(z,y) + d(y,2).

[For proof of this fact, see for example Kolmogorov and Fomin ([11], pp.
19-22) or Hardy, Littlewood, and Polya ([8], pp. 30-33).] If r = 2, then d, is
ordinary Euclidean distance. If » = 1, then d, is the so-called “city block” or
“Manhattan metric” distance.

The Minkowski r-metrics share several properties with ordinary
Euclidean distance. In particular, if we displace two points z and y by the
same vector z, then the distance between them does not change. In symbols,

dz,y) = dfz + 29 +2).
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If we stretch vectors ¢ and y by a scalar factor k, then the distance stretches
by a factor &. In symbols,

d.(kz, ky) = kd.(z, y).

However, the Minkowski r-metrics differ sharply from Euclidean distance
when rotations are involved. Any rigid rotation leaves FEuclidean distances
unchanged. The only rigid rotations which leave d, unchanged in general are
those rotations which transform coordinate axes into coordinate axes.

The numerical significance of these properties is brought out in another
gection. However, we point out here that while a configuration may be freely
rotated when Euclidean distances are being used, it may not be when more
general distances are used. We do not need to worry explicitly about finding
the preferred angular orientation of the configuration, since the iterative
minimization process automatically does this for us. However, we must be
aware that the coordinate axes have a significance for d, that they do not have
for Euclidean distance.

As an illustration we use experimental data by Ekman [7]. He obtained
direct judged similarities of 14 pure spectral colors. We have analyzed his
data for several values of r. In every case we obtain the familiar color circle,
very similar to the configuration obtained by Shepard [15a], though the
precise shape, spacing, and angular orientation varies with r. Fig. 18 shows

the stress of the best-fitting configuration as a function of ». We see that a
value of 2.5 for r gives the best fit. We do not feel that this demonstrates any

significant fact about color vision, though there is the hint that subjective
distance between colors may be slightly non-Euclidean. However, it illustrates
an approach to non-Euclidean distance that could be of significance in
various situations.

Miscellaneous Remarks

The idea of recovering metrie information from nonmetrie information is
not new. A quite different application of this idea, as well as a theoretical
discussion, can be found in two papers by Aumann and Kruskal [2, 3]. (See
particularly pp. 118-120 in the earlier paper.} Though the situation is not
presented there as a psychological one, it does not differ from psychological
situations in any essential way. The “subjects,” called there  The Board” and
consisting of Naval officers, are assumed to make certain comparisons, e.g.,
which of two simple logistic allocations is superior, as a result of some hypo-
thetical quantitative process of which they are not aware. By using a fairly
small number of such comparisons, the experimenter determines with limited
uncertainty the numerical values which enter into this quantitative process.

Another very interesting discussion of converting nonmetrie information
into metric information may be found in Abelson and Tukey [1].

In this paper we assume that there is a true underlying configuration of
points in Fuclidean ¢-dimensional space, that we can ascertain only the linear
ordering of the interpoint distances, and that we wish from this nonmetric
information to recover the configuration. Of course, perfect recovery can at
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hest mean construction of a configuration which differs from the original by
rigid motions and uniform expansions, for such transformations leave the
linear ordering of distances unchanged. Such transformations are called

“ximilarities,” and by a known geometrical theorem any transformation in

which every distance is multiplied by a fixed constant is a similarity. Thus
perfect recovery means construction of a configuration which is geometrically
similar to the original.

If the configuration has only a finite number of points, then of course
perfeet reconstruetion is not possible. However, if the number of points is
larze compared to the number of dimensions, then usually the reconstructed
configuration must closely resemble the original. (We note that Shepard was
the first to give a practical demonstration that in several dimensions a reason-
ahle number of points are usually tightly constrained.) If the eonfiguration is
infinite, perfect recovery may very well be possible. In particular it is possible
to prove that if A and B are subsets of Euclidean ¢-dimensional space (that is,
configurations), and if f is a 1-to-1 mapping from 4 to B which preserves both
strict inequality and equality of distances, then f must be a similarity if only
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A is big enough. A is big enough if it is all of {-space, or if it is a truly {-dimen-
sional convex subset, or even if it is merely a dense subset of the latter,

It is interesting to compare our technique with Shepard’s. His iterative
procedure closely resembles ours. Indeed, this whole paper is the outcome of
the author’s attempt to rationalize Shepard’s successful iterative procedure.
It is possible to deseribe his procedure in our terms thus. If d,; is the mth
largest distance, define 8,; to be the mth largest dissimilarity; instead of
making the influence of z; on z; proportional to d;; — d.; as we do, he makes it
proportional to 8;; — 8.; . It does not appear possible to describe his procedure
as one which minimizes some particular measurement of nonmonotonicity.

As far as results go, both procedures yield very similar configurations.
Shepard’s technique yields smoother-looking curves for dissimilarity versus
distance. s actually programmed our procedure is substantially faster than
Shepard’s, but this probably reflects programming improvements rather
than anything more fundamental.

It is interesting to read Bartholomew [4], who is concerned with testing
whether parameters are equal, subject to the assumption that they are
linearly ordered. (See especially p. 37.) His maximum-likelihood estimate of
these parameters bears essentially the same relationship to the observations
that our d.; bear to d,, . Furthermore, his expression U, , which plays an
important role in his paper and in the likelihood ratio, is essentially the same
as our raw stress S* In fact it might be possible to interpret our minimum-
stress configuration as being a maximum-likelihood estimate in some natural
sense,

Summaory

To give multidimensional scaling a firm theoretical foundation, we have
defined a natural goodness of fit measurement which we call the stress. The
stress measures how well any given configuration fits the data. The desired
configuration is the one with smallest stress, which we find by methods of
numerical analysis. The stress of this best-fitting configuration is a measure
of goodness of fit.

Shepard first brought out clearly that what we should be looking for in
multidimensional scaling is a monotone relation between the experimental
data and the distances in the configurstion, The stress is no more than a
quantitative measurement of how well this holds.
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4 Non-metric multidimensional scaling:
a numerical method*
Joseph B. Kruskal

1. Introduction

We deseribe a numerical method for multidimensional scaling. In a
companion paper [7] we describe the rationale for our approach to scaling,
which is related to that of Shepard [9]. As the numerical methods required
are largely unfamiliar to psychologists, and even have elements of novelty
within the field of numerical analysis, it seems worthwhile to describe them.

In [7] we suppose that there are n objects 1, --- , n, and that we have
experimental values §;; of dissimilarity between them. For a configuration
of points =, , --- , z, in {-dimensional space, with interpoint distances d
we defined the siress of the configuration by

where the values of d;; are those numbers which minimize S subject to the
constraint that the d,; have the same rank order as the §;; . More precisely,
the constraints are that d,; < d,.,, whenever &;; < 8:.; .

The stress is intended to be a measure of how well the configuration
matches the data. More fully, it is supposed that the “true’” dissimilarities
result from some unknown monotone distortion of the interpoint distances
of some “‘true” configuration, and that the observed dissimilarities differ
from the true dissimilarities only because of random fluctuation. The stress
is essentially the root-mean-square residual departure from this hypothesis.

By definition, the best-fitting configuration in ¢-dimensional space,
for a fixed value of ¢, is that configuration which minimizes the stress. The
primary computational problem is to find that configuration. A secondary
computational problem, of independent interest, is to find the values of
d,; from the fixed given values of d;; ; this is the computational problem of

“monotone regression.” This latter computation constitutes one step of the
main computation.

i

2. Missing Eniries

In some cases not all dissimilarities will be observed. Frequently the
self-dissimilarities &,; are either meaningless or unohserved: Sometimes there
is no distinction experimentally between 8,; and §;; so that only a hali-
matrix of dissimilarities is obtained. Sometimes certain individual dis-
similarities may simply fail to be observed. If the number n of objects is
large (say 40 or 50), the experimenter may very wisely decide in advanece

*reprinted from Psychometrika, 29, 1964, pp. 115-129
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to observe only a fraction of the dissimilarities for reasons of cost. What-
ever the reason, we adapt to the situation by a very simple change in the
definition of the stress: namely, both sums which appear in that definition
are restricted to run over those pairs (¢, §) for which §;; is observed. Thus
we accommodate missing observations without loss of elegance. Through-
out thiz paper all similar sums will be understood in the same sense unless
otherwise indicated.

Of course, if there are not enough dissimilarities observed our method
will break down. What this means is that there will be a zero-stress con-
figuration which has no real relationship to the data. One important case in
which this occurs is when the objects are split into two groups and the only
dissimilarities observed are those between objects in different groups. In
this case there is a simple zero-stress configuration in one dimension, namely
two distinet points, where each point represents all the objects in one group.

On the other hand, it iz not merely a question of how many
dissimilarities are observed, but depends on which ones are observed. In
many cases of practical importance, one-half or one-quarter of the dis-
similarities or fewer are quite sufficient if they are properly distributed in
the matrix of all possible dissimilarities.

3. Non-Fuclidean Distance

Of major interest is the ordinary case in which the distances are
Euclidean. If the point z; has (orthogonal} coordinates z; , -+ , z,; , then
the Euclidean (or Pythagorean) distance from z; to z; is given by

diy = [‘ZL; (x; — :c,-l)”:l”z.

However, the theory is applicable to mueh more general distance functions.
The numerical methods and formulas given in this paper cover a class of
distance funetions most often called the I, or [, metrics, but occasionally
known as Minkowski r-metrics (the term we use). The Minkowski r-metrie
distance is given by

3 1/r
d;; = [Z 2 — fillr] .
i=1

For r = 1.0, this metric is a genuine distance funetion because it satisfies
the triangle inequality. (For proof see ([6], pp. 19-22} or ([4], pp. 30-33).)
We restrict ourselves to these cases.

For r = 2.0, this metric becomes Euclidean distance. For » = 1.0,
this metric becomes the so-called ‘“‘eity-block distance’’ or “Manhattan

metric”’
&
di = IZ [T — il
=1

For r = o, it becomes a familiar metrie,

dy = max [0 — 244,
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which is sometimes called the I.-metric but is widely referred to in colloquial
mathematics as the “sup”’ metrie (“sup” is short for supremumj.

4. The Meihod of Steepest Descent

Let us now focus on the computational problem that faces us. We
restrict our attention to a fixed number of dimensions ¢ and a fixed metrie,
that is, a fixed value of r. The determination of their values is a matter of
judgment, and in many cases can be properly decided only after making
analyses with several different values. Thus for the computational question
we may assume fixed values of ¢ and r.

An entire configuration -can be described as a single vector (or a single
point—we use the terms interchangeably) in ni-dimensional space, whose
coordinates z,; fori = 1ton and I = 1 to £ are all the coordinates of all the
points of the configuration. We refer to ni-dimensional space as “configura-
tion space” and to {-dimensional space as “model space.” We emphasize
the fact that while a configuration has previously been viewed as n points
in model space, we may with equal validity consider it as a single point

(xu:"‘ T I A I U ;mat)

in configuration space.

Buppose now that the values of 8,; are given. Then for any point in
configuration space, that is, for any configuration, there is a definite stress
value S. In other words, S is a function

S=8@,, - 181y " 3Tyt )xni)

defined on the points of configuration space. Qur problem is to find that
point which minimizes S, Thus we are faced with a standard problem of
numerical analysis: to minimize 2 function of several variables.

| For a general review of methods used to solve this problem, see Spang
{10], which includes a good bibliography.

To solve this problem we adopt a widely used method of numerical
analysis. It is called the ‘“method of steepest descent” or the “method of
gradients.”” We start by picking a more or less arbitrary point in configuration
space. In other words, we start with an arbitrary configuration. We then
wish to improve the configuration a bit by moving it around slightly. The
method of steepest descent calls for.this to be done by ascertaining in which
direction in configuration space S is decreasing most quickly, and moving
a short step in that direction. This direction is called the (negative) gradient
and is determined by evaluating the partial derivatives of the function S.
In fact,

(_,5?:5., Lo a8 _ﬁ)

dzyy’ Yooy’ S

is the (negative) gradient. After arriving at a new, slightly better point in
configuration space, we again determine the gradient, which is different at
different points, and move along it. After many repetitions we arrive at a
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point frora which no iraproverent is possible, in other words, at a minimum
value of 3. This is what we are looking for. We can tell when this happens,
for at & minimum all the partial derivatives are zero, that is, the gradient
vector is zero.

5. The Difficulty of Local Minima

A point in configuration space from which no small movement is an
improvement is by definition & local minimum. However, a local minimum
may or may not be an overall minimum. Fig. 1 shows a function of one

Figure 1

variable with four local minima. Only one of them is the overall minimum.
If we seek a minimum by the method of steepest descent or by any other
method of general use, there is nothing to prevent us from landing at a local
minimum other than the true overall minimum. This is & widely known
difficulty—in fact, it could be called a standard difficulty of such problems.

In certain important minimization problems the only local minimum
is the true overall minimum, so this difficulty does not arise. With this
important exception, there are few minimization problems (in numerical
analysis) in which the local minimum difficulty can truly be vanquished.
At best, we can hope for reasonable confidence that we have the true
minimum. .

In our minimization problem the difficulty iz quite mild. In most eases
of interest it need not be a serious eoncern, for these reasons.

First, we can easily start the method of steepest descent from a variety
of different initial configurations. In prineiple, each initial configuration
could lead to a different local minimum. While only the smallest of these
could possibly be the true minimum, we would wonder about other still
smaller local minima. Usually in our minimization problems, most initial
configurations lead to the same local minimum, and this local minimum is
much gmaller than the few other loeal minima we find. It seems needless to
worry when this is so.

Second, the local minimum configuration which we suppose to be the
true overall minimum is not in itself the final end product of the analysis,
which must be accepted blindly. In most cases this configuration is of interest
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only if it makes sense, only if it can be interpreted or is useful in giving the
experimenter insight. If a configuration does this, it is unlikely to be seriously
at fault.

Third, unless the stress of the supposed true minimum configuration is
sufficiently small, we will not be interested anyhow. A minimum-stress
configuration whose stress is above 209, is unlikely to be of interest. Above
159, we must still be cautious; from 109, to 159, we wish it were better;
from 5%, to 109 is satisfactory; below 5% is impressive.

Fourth, many checks are possible by detailed comparison of the con-
figuration and the data, and by separate analysis of parts of the data.

6. Numerical Technique

In principle the iterative technique we use to minimize the stress is
- not difficult. It requires starting from an arbitrary eonfiguration, computing
the (negative) gradient, moving along it a suitable distance, and then re-
peating the last two steps a sufficient number of times. In this section we
discuss some computational aspects which are entirely independent of which
computer and which programming language are used.

Since the stress is invariant under translation and uniform stretching
and shrinking, we always normalize a configuration by first placing ite
centroid (center of gravity) at the origin and then by stretching or shrinking
8o that the root-mean-square distance of the points from the origin equals
one. (In our program we have arbitrarily chosen to use Euclidean distance
for this purpose, regardless of which Minkowski distance is being used for
the interpoint distances.) A configuration which has these properties is
said to be normalized.

If ordinary Euclidean distance is used, then the stress is invariant
under all rotations, so it becomes possible, and for some purposes desirable,
to normalize the angular attitude of the configuration. A natural way to do
this is to rotate the configuration so that its so-called principal axes coincide
with the coordinate axes (in the natural order). On the other hand, using
Minkowski r-metric distance for r # 2, the only rotations which leave stress
invariant are those which transform coordinate axes into coordinate axes.
In this case it is possible, and perhaps desirable, to normalize the angular
attitude by rotating so that the so-called one-dimensional variance decreases
from one coordinate axis to the next. While these normalizations are not
difficult, they can easily be left as a separate operation. Therefore we do
not discuss them further here.

If & fairly good configuration is conveniently available for use as the
starting configuration, it may save quite a few iterations. If not, an ar-
bitrary starting configuration is quite satisfactory. Only two conditions
should be met: no two points in the configuration should be the same, and
the configuration should not ke in a lower-dimensional subspace than has
been chosen for the analysis. If no configuration is conveniently available,
an arbitrary configuration must be generated. One satisfactory way to do
this is to use the first = points from the list
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Another way would be to generate the points by use of a pseudorandom
number generator. In either case the resulting configuration should be
normalized. _

Suppose we have arrived at the configuration x, consisting of the n
points z, , - - - , &, in { dimensions. Let the coordinates of x; be 2y, , -+, 2 .
We shall call all the numbers z,, , with¢ =1, --- ,nands = 1, --- , {, the
coordinates of the configuration z. Suppose the (negative) gradient of stress
at z is givenr by g, whose coordinates are g,, . Then we form the next con-
figuration by starting from z and moving along ¢ & distance which we call
the step-size a. In symbols, the new configuration 2’ is given by

[s4

x:s = Xy + Fis

mag (g)

for all 7 and s. Here mag (g) means the relative magnitude of g and is given by

mag (9) = V' X gL/ V 2 vl .

If we assume that x Is normalized, then a simpler formula is valid:

mag (9) = oy 0% -

We give the formulas for g in another section. Of course, z’ should be normal-
ized before further use.

The step-size « is varied from one iteration to the next. The step sizes
used do not affect the solution ultimately obtained. However, they pro-
foundly affect the number of iterations required to reach the solution, and
are an important computational consideration.

The step-size procedure given here is the result of considerable numerical
experimentation. No claim is made that it is optimal in any sense. How-
ever, it seems to be reasonably fast, it is robust, and it avoids many pitfalls
which we discovered in earlier procedures. It provides large steps during
the early stages of calculation and small steps at the end. It is capable of
providing a very exact solution when desired.

The initial value of @ with an arbitrary starting configuration should
be about 0.2. For a configuration that already has low stress, a smaller value
should be used. (A poorly chosen value results only in extra iterations.)
Thereafter the step size is determined by the following formula.
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Fpresent = Fprevious” (ANLlE factor) - (relaxation factor) - (good luck factor),
where

angle factor = 4.0%*" "

8 = angle between the present gradient and the previous gradient,
1.3
1 4 (5-step-ratio)®*’

5-step-ratio = min [1, ( preant stress ):I,
stress 5 iterations ago

relaxation factor

good uck factor = min [1, (M)]
previous sfress

If five iterations have not yet been calculated, the “stress five iterations
ago” may be taken as the first stress computed. Similar artifices may be
used in connection with “previous stress’” and 6 on the very first iteration.
If ¢ is the present gradient and g'’ the previous gradient, cos § may be calcu-

lated by
P I
008 f = —mE e
\/Z 9?.\/2 Gie

As the computation proceeds, léﬁccessivéiir smaller values of stress are
achieved. (OQccasionally, an iteration may increase the stress rather than
decrease it.) Eventually the stress “levels off,” and further iterations cause
little or no improvement. When is it time to stop and consider the configura-
tion then obtained as sufficiently accurate? There is no really good answer
to this question. However, the following rough guide, sensibly used, provides
& practical answer.

Asg the computation proeeeds, the relative magnitude mag (g} of the
successive gradients decreases. At a configuration which is precisely a mini-
mum, the gradient and its magnitude are zero. Subject to the following qualifi-
cations, we suggest that when the magnitude mag (g) reaches a value of
approximately 2 per cent of its value for a typical arbitrary configuration,
then the iteration may be terminated. This value of mag (g) at which we
stop will be called the local minimum criterion. For data with large statistical
variations, larger values are appropriate, and conversely. For large values
of nand ¢ (say n = 40, ¢ = 2 or n = 15, ¢t = 5), a larger local minimum
criterion is appropriate, and for small values of n and ¢ (say n = 9,1 = 2 or
n = 15, ¢ = 1), a smaller value is appropriate. A larger value of the criterion
could mean 5 per cent or conceivably as high as 10 per cent. A smaller value
could mean 0.5 per cent or anything down to 0 per eent. If it appears possible
and desirable {0 achieve a stress of zero, then of course the computation
should continue until the gradient is zero.

Any iterative minimization procedure is in danger of converging to 2
local minimum which is not the overall minimum, that is, a solution from
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which no small change is an improvement and yet which is not the best
solution, In our situation, experience shows that this is not a serious difficulty
because a solution which appears satisfactory is unlikely to be merely a
local minimum. The following simple technique may be used to investi-
gate the situation.

After reaching a solution which we fear is only a local minimum, we
apply a violent motion to create a new arbitrary configuration, and we start
all over again. We do this repeatedly, and obtain several solutions. We may
take the best of these to be the true best solution. A handy way to apply
a violent motion is simply to use a very large value of e. It is also reason-
able to use the present g (after normalization) as the new x. (In effect this
makes « infinite.) If we intend to compute several solutions as described,
it is appropriate 1o relax the local minimum criterion to a fanly large value,

and later to continue iterative convergence with a more stringent criterion
starting from the best solution.

7. Programming Technique

Since the procedure described in this paper is entirely impractical
without the aid of an automatie computer, it seems desirable to describe
the procedure in sufficient detail that an experienced programmer can easily
program it.

TWO ~ DIMENSICNAL ARRAYS ONE = DIMENSIONAL ARAAYA

Xt{1,L) CONFIGURATION DISSIMIM]  oissiMiLARTIES & ]

X2 (1. L) GRADIENT TJiM ] L AND |

X3{I,L} ©OLD GRADIENT DISTIM} DISTANCES dij

SIZE: Pmax % tmax DHAT(M} FITTED VALUES I
D@THER[M }

SI1ZE: Nday OR Nppgx (Pmax -11/2

CREATE OR
|s1t2RT | “READ 1N el S T a""’ £Ng
ConpIeuR~ URATION dy; L GRAOH

1 2 3 4 B}

NEW
CONFIG—
-] URATION

TERMINATE

Froure 2

A block diagram of the procedure appears in Fig. 2. We start by creating
or reading in a configuration. After normalizing the configuration, we caleu-
late the distances d,; . Then we fit the numbers d;; . (The rank order of the
dissimilarities is used only at this stage of the iteration.) From d;; and d;; ,
we caleulate the stress and the gradient of the present configuration. Then
we decide whether we have found a (local) minimum of the stress yet, or
whether the normal iterative process should be continued. (It is also desir-
able to have other termination rules, notably a limit on the number of iiera-
tions.) If a local minimum has been reached, then the configuration, the
stress, and other useful information should be printed. The configuration
should be punched out or saved in some way. Also, printing a history of
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the more important variables is desirable. If the calculation is to continue,
then the step size is determined, and the new econfiguration is calculated.
This starts a new step of the iteration.

Let n,,. be the greatest number of objects and ¢,,, the greatest number
of dimensions which the program is meant to handle. The major blocks of
storage needed are two-dimensional arrays X1, X2, X3 and one-dimensional
arrays DISSIM, 1J, DIST, DHAT (d-hat}, and D@THER (d-other) as
shown in Fig. 2. At the start of an iteration, X1 holds the configuration and
X3 holds the old gradient which was used to find it. (Thus X1 (I, L) holds
the value z., , and X3 (I, L) holds the previous value of g;;. ) The gradient
at the present configuration is put into X2. Next cos 8 is calculated, where
8 is the angle between the two gradients. The new configuration is calcu-
lated and placed in X1. Then everything is ready for the next step of the
iterafion.

DISSIM contains the original dissimilarities (or similarities) 6.; , as
shown in Fig. 3. Each cell of 1J contains (packed together in one cell) the

1 } )
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values of 7 and j for the dissimilarity in the corresponding cell of DISSIM.
When the dissimilarities are first read, they are placed in DISSIM without
any gaps (that is, the cells of DISSIM are filled one by one in order, with no
intermediate cells remaining empty). If the dissimilarities are inherently
symmetric, or have previously been made symmetric by a separate calcula-
tion, then only the entries from one-half the matrix are put into DISSIM.
If a dissimilarity is missing (presumably this fact is signalled by a very
gpecial artificial value of 4;;), then no entry is made in DISSIM nor is any
space reserved.

At the same time that each entry is placed in DISSIM, the correspond-
ing values of ¢ and j are packed together in the corresponding cell of 1J.
Thus, although the dissimilarities are put into DISSIM in a manner which
ignores their subscripts, this essential information is still present in LJ.
Let the number of entries actually placed in DISSIM be M.

After DISSIM and IJ have been filled, then the M entries in DISSIM
are sorted in order of increasing algebraic value. (An efficient sorting pro-
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cedure should be used, such as the radix-exchange method of Hildebrandt
and Isbitz [5].) However, if the measurements in DISSIM are similarities
instead of dissimilarities, decreasing order is used. (This is the only way in
which similarities and dissimilarities are treated differently.) During the
sorting procedure the M entries in 1J are simultaneously rearranged so as
to preserve the correspondence between eells in corresponding positions

of DISSIM and IJ. After the sorting is complete, the values in DISSIM
are no longer strictly needed, as their rank order is now available in IJ.

However, it is convenient for several reasons to retain the original data.

In cases of ties (equal dissimilarities), the order in which they occur
does not matter. However, the 1J eell corresponding to the first dissimilarity
of a tie-block (that is, a block of equal dissimilarities} should contain the
number of dissimilarities in that tie-block. (This number must be packed
in together with 4 and 5.) Also, these cells must be distinguished from other
cells, so that the presence of the tie-block can be noted later.

The first stage of each iteration is to find the distances d;; . For Min-
kowski r-metric distance, use the formula

diy = [E 20 — zal ]m.

2ul

In the ease of ordinary Euclidean distances, r = 2 and

=4/ ; (zee — )

In the case of city-block metric, r = 1 and

diy = Z_} [0 — @il

One very important point concerns the order in which the distances are
computed. They should nef be computed using a double loop on 2 and j.
Instead they should be computed using a single loop in which m runs from
1 to M, corresponding to the entries in IJ. Thus at the mth pass through
the loop, the mth entry in IJ is consulted, its values of 7 and j are used, and
the resulting value of d,; is placed in the mth position of DIST.

The next stage of each iteration is to fit the numbers d;; . We describe
how to do this in another section. After fitting, we calculate the stress. It is

convenient to set
S* E (d!r - Jii)ga

T*=Ed1?’ '
5 = VS/T=.

It is best to calculate S* and T* by a single loop on m from 1 to M. On the
mth pass through the loop we use ¢ and j from the mth entry of 1J. We add
to the partially accumulated values of §* and T* the quantities {d;; — d.y)*
and d;; . At the end of the loop, S is caleulated from S* and T™*.

To calculate the (negative) gradient we use the following formulas.
For Minkowski r-metric, component gy, , which is to be placed in X2 (K, L),

I
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is given by
_ . r—1 .
gu = S E (" — 6)”)[@1@:“@ ;l’:jl = d’f?xl?I signum (z;; — ;1)

Here 6" and ¢*' denote the Kronecker symbols (8 = 1if k = 4, & = 0
if k¥ # ¢) and must not be confused with dissimilarities §,; Slgnum is +1
for a positive number, —1 for a negative number, and 0 for 0. In case of
Euclidean distance r = 2 and this becomes

gu = 8 2, (8"~ a"")[d”—sjﬁ — g_;] @ = 24),

d;;
In the case of city-block distance, r = 1 and it becomes
i i d,',' - d",- d
g =8 Z:, (8 — & )[?— - f;] signum (2., ~ z;).

To calculate the gradient use a single iterative loop on m from 1 to M. On
the mth pass through this loop, use ¢ and j from the mth cell of IJ. If { = j,
then 8** — 8"/ = 0 for all k, so the corresponding term in the formula vanishes,
and we may skip to the next value of m. If 7 5 j, then for{ = 1 to ¢, add the
following term into g; (that is, X2 (I, L)) and subtract it from g,, (that is,
X2{, L)

8 —1
[S*( :: Ju) 11* u] dr =1 Ixol - xfll ISIgmlm (xil - xil)-

At the end of the loop, the gradient g has been accumulated in X2,

Once the gradient has been calculated, it is time to decide whether or
not a local minimum has been reached. If it has, suitable output is created,
and either the calculation terminates, or else it continues after applying a
violent motion to create a new arbitrary configuration. If a local minimum
hag not been reached, the new step size is caleulated, the new configuration
is calculated and pormalized, and the iteration is ready to start over again.

8. Algorithm for Fitting

We describe our algorithm for calculating the numbers d;; . We first
describe it supposing that there are no ties (equal dissimilarities), After-
wards we describe the simple modification needed in case ties are present.

Algorithms for essentially the same purpose, though more general
because weights are permitted, may be found in Miles ([8], pp. 319-320},
Barton and Mallows ({1], pp. 426-427), and Bartholomew ([2], pp. 37-38)
and ([3], pp. 242-244). Algorithms and useful facts for the very much more
general situation in which the dissimilarities are only partially ordered, not
linearly ordered, and for which the function being minimized is much more
general then a sum of gquares may be found in van Eeden ([11], pp. 134-130)
and ([12], pp. 508-512). Our algorithm is essentially the same as algorithm
@, of Miles ([8], p. 539). However, we feel for several reasons that: it is worth-
while to describe our algorithm. First, Miles’ algorithm involves many ar-
bitrary choices, and how these are made affects the efficiency of the com-
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putation. Qur algorithm is fully explicit; in effect, we make these arbitrary
choices in an intelligent manner. Second, none of these algorithms are de-
seribed in sufficient detail or in simple enough notation to make easy their
use on an automatic computer. Third, the efficiency of these algorithms
varies very widely. We believe ours to be as efficient as any of those mentioned.

Imagine the dissimilarities J.,;, arranged from smallest to largest in
DISSIM, as in Fig. 3. The subscript pairs (i, , j.) are arranged in the same
order in IJ. The correct values cf‘-,- can be described in this way. There is
a partition of the dissimilarities into consecutive blocks b, , -+ - , b, such that
within each block b the value of d,; is constant, and this common value d,
is the average of the d,; values in the block. As this is true, it is only necessary
to find the correct partition in order to calculate the numbers d; .

Our algorithm starts with the finest possible partitions into blocks, and
joins the blocks together step by step until the correct partition is found.
The finest possible partition consists naturally of M blocks, each containing
only a single dissimilarity.

Suppose we have any partition into consecutive blocks, We shall use
d, to denote the average of the d;; in block b. If b , b, b, are three adjacent
blocks in ascending order, then we call b up-satisfied if d, < d,, and down-
satisfied if d,_ < d, . We also call b up-satisfied if it is the highest block,
and down-satisfied if it is the lowest block.

At each stage of the algorithm we have a partition into blocks. Further-
more, one of these blocks is active. The active block may be up-active or
down-active. At the beginning, the lowest block, consisting of d;,,, , is up-
active, The algorithm proceeds as follows, If the active block is up-active,
check to see whether it is up-satisfied. If it is, the partition remains un-
changed but the active block becomes down-active; if not, the active block
is joined with the next higher block, thus changing the partition, and the
new larger block becomes down-active. On the other hand, if the active
block is down-active, do the same thing but upside-down. In other words,
check to see whether the down-active block is down-satisfied. If it is, the
partition remains unchanged but the active block becomes up-active; if not,
the active block is joined with the next lower block into & new block which
becomes up-active. Eventually this alternation between up-active and down-
active results in an active block which is simultaneously up-satisfied and
down-satisfied. When this happens, no further joinings can occur by this
procedure, and we transfer activity up to the next higher block, which be-
comes up-active. The alternation is again performed until a block results
which is simultaneously up-satisfied and down-satisfied. Activity is then
again transferred to the next higher block, and so forth until the highest
block is up-satisfied and down-satisfied. Then the algorithm is finished and
the correct partition has been obtained.

After the final partition has been found, then for every block b the
value d, is placed in every DHAT cell of b. This completes the fitting compu-
tation,

In case there are ties among the dissimilarities, the algorithm for fitting
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only needs to be modified by preprocessing. If we adopt the primary ap-
proach to ties described in [7], that is, if the only constraints on the d:;
are those in Section 1, then this preprocessing simply consists of arranging
the dissimilarities within each tie-block in such a way that the distances
d;; within that block form an increasing sequence. After this preprocessing,
the algorithm ig carried out as before.

In case we adopt the secondary approach to ties, that is, if we further
constrain the d,; to be equal when the corregsponding 4;; are equal, the pre-
processing is still simpler. Instead of starting the algorithm with the finest
possible partition, we start it with the partition into tie-blocks. More specifi-
cally, the block containing 8;; consists of all dissimilarities which equal &,; .
(In case no other dissimilarities happen to be tied with &,; , the block con-
tains only one dissimilarity.) '

In programming the above algorithm, it is convenient to keep track of
the blocks of the partition in the following way. If a block b starts with the
mth dissimilarity and contains » dissimilarities, with » = 2, then the first
D@THER. cell should contain » and the last DPTHER cell should contain
m; also, the first DHAT cell should contain d, and the seeond DHAT cell
should contain ), d;; , where the sum is over all d;; in the block. (Of course,

1
J»=;Zdu,

so we are storing redundant information.) If a block confains ¢nly one
dissimilarity, then the D@THER cell should be recognizably blank, and
the DHAT cell should contain d, = d;; = Y. d.; .

This structure makes it easy to check whether & is up-satisfied or down-
satisfied and makes it easy to join two adjacent blocks together. When
joining takes place, the joined Y d;; should be formed by adding the two
separate sums, and the new d, formed by dividing by » This minimizes
round-off error.

If the primary approach to ties iz adopted, the sorting of the d;, in
each tie-block (during preprocessing) must of course be acecompanied by a
simultaneous identical rearrangement of the corresponding cells in IJ. If
large tie-blocks are anticipated, then the sorting should be done by an efficient
procedure such as the radix-exchange technique of Hildebrandt and Isbitz [5].

9. Summary

We have described the numerical methods necessary to use our ap-
proach to multidimensional scaling. We have included sufficient detail so
that an experienced programmer should not have difficulty in creating a
program to perform these computations.
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5 Metric Structures in Ordinal Data*
Roger N. Shepard

Prior to the development of procedures of measurement specifically for the bebav-
loral sciences, discussions of scientific measurement (e.g., Cambell, 1920, 1928)
tended to focus on the physical sciences and, hence, on scales in which the distance
of separation (or spacing) between points on the scale.is uniquely determined except
for an arbitrary multiplicative constant (viz., the “scale factor” that fixes the size of
the unit). Such discussions, that is, were almost exclusively concerned with whar
Stevens (1951 has classified as “interval” and “‘ratio” scales.

Subsequently, however, the rather different character of data collected in the hehav-
ioral sciences has led psychologists to construct weaker types of scales such as the
“ordered metric” type proposed by Coombs (1950). With this type of scale the
separations between the points are determined only to within the enormously wider
class of order-preserving transformations. Recent investigations have indicated,
though, that the difference between an interval and an orderced metric scale, sav, may
not be as great as at first appears. Accordingly the corresponding distinction hetween
metric and nonmetric information may be susceptible to further clarification,

I. BACKGROUND: OXNE-DIMENSIONAL SCALES

'Those scales are usually considered nonmetric in which the relations among the
interpoint distances are specified by inequalities only (rather than by the strict equali-
ties that are required to fix an interval scale). Simple ordinal scales {Stevens, 1951)
as well as the ordered metric and “higher ordered metric” scales (Coombs, 1950,
1964; ¥agot, 1959; Siegel, 1936) are all essentially nonmetric according to this defini-
tion, since the strongest information that is given about anv two values or interpoint
separations concerns only which one is the larger. Nothing is explicitly stated about
how much larger,

APPROXTMATION OF NONMETRIC SCALES TO METRIC SCALES

Actually though, if nonmetric constraints are imposed in sufficient number, thev

U1 am greatly indebted te my colleague J. B. Kruskal for enabling me to carry out cextensive
Muante Carlo explorations using his improved computer programs for nonmetric scaling. I have
also profited from discussions of various aspects of this investigation with him and with J. 1.
Carroll. The preparation of artiticial data and the running and analvsis of the computer caleula-
tions were carried out by Miss Maureen Sheenan. The paper itself has bencfited from the critical
commuoents of several readers including, particularly, C. H. Coombs and R, 1D, Luce.

*reprinted from the Journal of Mathematical Psychology, 3, 1966, pp. 287-300, 308-311
and 313-315
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begin to act like metric constraints. In the case of a purely ordinal scale the nonmetric
constraints are relatively few and, consequently, the points on the scale can be moved
about quite extensively without violating the inequalities (i.e., without interchanging
any two points). As these same points are forced to satisfy more and more inequalities
on the interpoint distances as well, however, the spacing tightens up until any but
very small perturbations of the points will usually violate one or more of the inequal-
ties.

Abelson and Tukey (1959, 1963) have established this intuitively plausible fact
on a more quantitative and rigorous footing. Given any nonmetric scale (i.e., set of
inequalities on the coordinates or coordinate differences for the points on a scale),
they propose an associated interval scale (i.e., set of explicit metric coordinates for
those points) that best represents the nonmetric scale in this “maximin’ sense: The
smallest “‘formal”” product-moment correlation between the proposed coordinates
and any other coordinates that satisfy the same inequalities shall be as large as possible.

‘They have examined, particularly, the case of four points on a one-dimensional
scale. In this case they found that, if only the rank order of the points themselves is
known (the ordinal scale), the squared maximin correlation, r%, is already .63. If,
in addition, the rank order of the distances between adjacent points is known (an
ordered metric scale), #? increases to between .67 and .94 (depending upon the par-
ticular ordering given). Finally, if the complete ordering of all interpoint distances
is known (a higher ordered metric scale), ? increases still further to between .91 and
.97 (depending, again, on the particular ordering). For many practical purposes, then,
a knowledge of the rank order of the interpoint distances may become almost as good
as a knowledge of the actual distances themselves.

Frank Goode (1962; Coombs, 1964, pp. 96-102) has investigated a different (**work-
sheet””) method for the conversion from higher ordered metric scales to interval
scales. Apparently owing to the strong constraints in this type of nonmetric scale,
though, the canonical representation proposed by Goode (his “equal-delta™ solution)

typically agrees very closely with the maximin 72 solution of Abelson and "T'ukey (e.g.,
see Coombs, 1964, p. 102).

EFFECT OF NUMBER OF SCALE POINTS ON THE APPROXIMATION

The results of Abelson and Tukey, particularly, demonstrate that different types of
nonmetric scales vary in the extent to which they approximate (or behave like) metric
scales, But the question remains, for any one type, as to whether this degree of approxi-
mation increases or decreases with the number, #, of points on the scale. Neither
Abelson and Tukey nor Goode have reported any systematic examination of higher
ordered metric scales consisting of more than four or five points, but Abelson (1959)
and Abelson and Tukey (1959) have reported investigations of the dependence of
maximin r? on n for the ordinal case and for certain simple ordered metric cases.

Whether the over-all effect of the nonmetric constraints should become looser or
tighter with an increase in # is not immediately apparent for these particular cases,
since in both the ordinal and simple ordered metric cases the number of constraints
increases linearly with the number of points.

In fact, however, Abelson and Tukey found that maximin #* generally decreased
with increasing »#, For example, as n increased from 3 to 20, #? declined from .75
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to .41, for the purely ordinal scale, and from .93 to .69, for the “‘diminishing returns”
ordered metric scale (in which the separation between each successive pair of adjacent
points is less than the preceding separation).

These systematic declines may in part have been a consequence peculiar to the
maximin criterion adopted by Abelson and Tukey, though. For, each increase in n
introduces opportunities for satisfying the given nonmetric constraints by means of
more and more bizarre spacings (Abelson and Tukey's “corner sequences”). However,
owing to the improbability of such irregular extremes of spacing in nature, their
practical significance may be small. For some purposes, then, the maximin #* may not
be the most useful criterion. Whether a criterion based on some expected deviation
(rather than the most extreme possible deviation) would also show this general decline
with increasing » has not, apparently, been determined.

There is reason to suppose that an exploration of the higher ordered metric case
would lead to conclusions that diverge sharply from those just reviewed for the
ordinal and simple ordered metric cases, In particular, since the number of inequalities
that must be satisfied increases like n2 {rather than like #) in the “higher’ case, increases
in 7 should lead to a tighter and tighter over-all constraint on a higher ordered metric
scale, That is, such a scale should become more and more like a fully metric scale
(Shepard, 1962b, p. 239).

Suppes and Winet (1955) and Aumann and Kruskal {1958, p. 118) have reported
results, for a particular limiting case of infinite #, that provides further support for
this intuitive argument. Specifically, they establish that a complete ordering of the
distances between alf points on a closed interval determines those distances except for
a multiplicative scalar. Thus, in the limit of a lincar continuum at least, the informa-
tion in the higher ordered metric scale becomes precisely equivalent to the information
in the corresponding interval scale.

EXTENSIONS TO BE EXPLORED

The need is rapidly developing for further explorations of the conditions under
which essentially metric information can be extracted from seemingly nonmetric
data. In addition to the potential relevance of such explorations for thearies of measure-
ment in general, there is also the clarification that they should supply for certain
scaling procedures recently developed at the Bell Telephone Laboratories in particular.
These latter include a variety of multidimensional scaling which has sometimes been
called “‘analysis of proximities” (Klemmer and Shrimpton, 1963; Kruskal, 1964a, b;
Shepard, 1962a and b, 1963, 1964, 1965} and a variety of “nonmetric factor analysis”
(Shepard and Kruskal, 1964). Both of these two types of procedures have been found
in practice to yield tight, metric solutions even when the input data consisted of
nothing but rank orders. As in the case of one-dimensional higher ordered metric
scales, moreover, the extent to which this conversion from qualitative to quantitative
information could be fully realized seemed to increase with the number of points, .
Accordingly, particular attention will be given, here, to the syvstematic effects of this
variable.

1. 'THE CASE OF A SINGLE ORDERING OF PAIRS OF OBJECTS:
ANALYSIS OF PROXIMITIES



Metric structures in ordinal data 107

Among the types of nonmetric scales already mentioned, the higher ordered metric
type is of particular interest here because it evidently represents the closest approxima-
tion to a truly metric scale. There is even reason to suspect that the approximation
hecomes asymptotically perfect as » is indefinitely increased in an appropriate manner.
Moreaver, psychological data are readilv collected in just the form required for this
type of scale. For example, subjects may be presented with all pairs from a set of #
stimuli and asked to rank order these n{n — 1) 2 pairs with respect to the subjective
similarity {or dissimilarity) of the two stimuli in each pair.

Or, even if a numerical rating of similarity is obtained for each pair, these ratings
may be meaningful only to within a monotonic transformation (i.c., on an ordinal
scale). Thus, an analysis of Ekman’s (1954) data on rated similarity of pairs of colors
showed that the original ratings were curvilinearly related to interpoint distance in the
underlying psychological scale (Shepard, 1962b, p. 237). Since the form of the curvi-
linear relation was not known in advance of the analysis, only the rank order of the
original ratings could be assumed of significance for the scalc.

Data of this general form are not of course confined to ratings of subjective similarity.
There are also many other types of measures of the psychological closeness of pairs of
objects, stimuli, or people—such as frequency of confusion, disjunctive reaction time,
strength of association or mutual choice. All of these scem subsumable under the more
generic term *‘proximity relation” (Coombs, 1964) or “proximity measure” (which
will be used here).

ANALYSIS OF PROXTMITIES AS A MULTIDIMENSIONAL PROBLEM

Clearly, any scale used to represent a set of # objects should have the property
that psychological proximity is preserved in the geometry of the scale. That is, if
objects 4 and B are more closely related psychologically than objects C and /), then
the corresponding scale-peints 4 and B should be closer together than the points C
and D. The central question with which we arc here concerned then takes this form:
Given a complete set of r(n — 1)/2 proximity measures for n objects, to what extent is a
metric arrangement of the corresponding # points rigidly determined by the require-
ment that the rank order of the interpoint distances be just the reverse of the rank
order of the given proximity measures ?

We must notice, however, that some sets of proximity measures cannot be accom-
modated in this sense by any one-dimensional scale. For example, four points 4, B,
C, D cannot be arranged on a line in such a way that their six interpoint distances
have the order BC << CD << AB < AD <= BD) < AC. In order to satisfy these
constraints, the points must be arranged in a two-dimensional space. In short, although
all ordinal scales and simple ordered metric scales can be one-dimensional, many
higher ordered metric scales are necessarily multidimensional.? The present investiga-
tion is primarily concerned with such multidimensional scales for two reasons. First,
they have not previously been studied as thoroughly as unidimensional scales and,
second, they are more general in the sense that unidimensional scales can always be

subsurmned as a special case.

?In general, any ordering of all n{n — 1)/2 distances among # points (including ties) can be
realized in a Euclidean space of n — 1 dimensions (Bennett and Hays, 1960, pp. 37-38; Shepard,
1962a, pp. 129-130).
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LimiTaTioNs oF PURELY NONMETRIC REPRESENTATIONS

Before proceeding further, mention should be made of a technique for the multi-
dimensional analysis of proximity measures that has already been developed by W. L.
Hays and refined by Coombs and his other associates (see Coombs, 1964, Chs. 21-22).
This technique differs fram others to be considered heré-in that it does not attempt
to recover a metric configuration. It does start with a (partial) ordering of the inter-
point distances, but the result consists of enly an ordering of the points on the “axes”
of the solution.

The question, here, is whether such a purely nonmetric solution preserves all of the
significant information in the original nonmetric data. Now if it did, then any parti-
cular metric spacing along the axes that might be adopted for the purposes of con-
structing a spatial picture of the solution should be equally consistent with the original
data. However this is not at all the case; for, clearly, the rank order of the interpoint
distances changes drastically with alterations in this spacing. Indeed solutions that have
been presented spatially in this way (Coombs, 1964, pp. 476, 493) can be shown to
violate the original data for just this reason.? Coombs himself acknowledges that “the
figure does not adequately reflect the metric relations nor the relative lengths of the
two dimensions” (p. 476). Still, the fact that inconsistencies arise from an arbitrary
“metrization” of nonmetric solution conclusively shows that some of the information
in the initial data has been ignored ifi the process of constructing the solution.

METRIC SOLUTION BY ITERATION OX A COMPUTER

As early as 1954 there were indications that the kinds of constraints considered by
Abelson, Tukey, and Goode, in one dimension, {but ignored by Hayvs and Coombs,
in more than one dimension) might permit the recoverv of essentially metric solutions
even in the multidimensional case. In some preliminary explorations, which later led
to an application of multidimensional scaling to the study of stimulus generalization
(Shepard, 1955, 1958), it became apparent that a small number of points on a plane
typically could be moved only slightly without disrupting the rank order of the inter-
point distances. Some crude two-dimensional solutions were even obtained by a
trial-and-error process of alternately adjusting the positions of small movable markers
on a flat surface and measuring the distances between the markers until a satisfactory
approximation to the desired ranking was achieved. Entirely independently, Frank
Goode used a somewhat similar trial-and-error process (using pencil and worksheet)
to show that a particular configuration of niné points in two dimensions could be
closely reproduced on the basis, solely, of the rank order of the 36 distances among
those points (Goode, 1957),

Nevertheless, metric representations of higher ordered metric scales in more than
one dimension did not become practicable on a large scale until the crude method of
successively adjusting the positions of markers on a plane was explicitly formalized
to the point where it could be implemented on a digital computer. The great speed

#In the first of these two spatial solutions presented by Coombs, for example, the distance
between the points B and E is considerably greater than the distance between the points 4
and D But, in the partial ordering of distances from which this solution was obtained, the
distance BE is actually eight levels below {i.e., smaller) than the distance AD (see Coombs,
1964, p. 469).
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and storage capacity of the computer permitted solutions with much larger numbers
of points than could ever have been attempted by hand. Morcover, by recasting the
method into the more abstract language of a computer program, the inherent restric-
tion of physical adjustments to two or, at most, three dimensions could be removed
without difficulty. Finally, in the analysis of real data, the errors of measurement
(always present in empirical estimates of proximity) could be balanced against cach
other in a more objective manner.

In the first program of this kind (Shepard, 1962a, b), the coordinates of a trial
configuration were iteratively adjusted in a manner designed to bring the rank order of
the interpoint distances into closer and closer coincidence with the inverse of the
rank order of the given proximity measures. A considerable number of solutions have
now been obtained by applying this program to real psychological data as well as
to artificial data for which the “true” configuration was known in advance. The con-
figurations to which this program has converged have generally supported the notion
that the over-all constraint does indeed increase with the number of points, #. With
as many as 15 poeints, the solutions possessed a degree of metric precision that was,
at the time, quite surprising (e.g., see Shepard, 1962b, Fig. 3).

More recently, Joseph Kruskal (1964a, b) has introduced some significant refine-
ments into this general type of method. In place of the originally adopted measure of
departure from a perfect inverse ranking (Shepard, 1962a, p. 136), Kruskal proposed
the measure

s —d /S, g

i<

where d; is the distance between the trial points 7 and § during the current iteration
and where d,; is the corresponding value in that sequence which (a) is monotonically
related to the given proximity measures and (b) minimizes the expression (1)} for the
current 4;; values. In words, the measure is simply the square root of a suitably
normalized sum of squared deviations from the best-fitting monotonic sequence.

A desirable feature of this measure is that, while it is strictly invariant under any
monotonic transformation of the given proximity measures, it does vary continuously
with changes in the coordinates of the configuration. Kruskal was thus able to use the
negative gradient of this measure to construct an iterative process that seeks its
minimum by the method of steepest descent. The advantage of Kruskal’s steepest-
descent algorithm appears to be primarily theoretical or conceptual, however; the
stationary configurations to which his process converges have been found in
practice to be essentially indistinguishable from the solutions obtained by the earlier
iterative process. Again, this is to be expected for any reasonable method owing to the
very tight constraints imposed by the input data as soon as # becomes at all large
(cf., Kruskal, 1964a, Fig. 11).4 ,

* One advantage of the method of steepest descent is that the computational algorithm is
directly dictated by the definition of the criterion to be optimized. Creative understanding
is therefore needed only for the construction of the criterion—not for the construction of the
algorithm. This fact has undoubtedly facilitated the extension of the general type of iterative
approach considered here to other cases discussed in the ensuing sections; viz., cases of
nonmetric factor analysis (by Kruskal and Shepard), analysis of pair-comparison data (Carroll
and Chang, 1964b), and nonmetric analvsis of factorial experiments (Kruskal, 1965).
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Still, no systematic exploration of the effect of # on the accuracy of solutions obtained
by these methods has previously been reported. For this reason a rather extensive
exploration of this kind was recently undertaken (using Kruskal’s refined algorithm),
and the results will be described in a following section. First, however, it is instruc-
tive to consider some mathematical arguments concerning what happens in the theore-
tical limit as the number of points bécomes infinite.

MaTtHEMATICAL CONSIDERATION OF SOME LInITING CASES OF LARGE 7.

If more and more points are randomly imbedded in some k-dimensional convex
region of Euclidean space, this region will gradually become uniformly fifled with
points. As a helpful heuristic, therefore, let us pass immediately to the limiting case
in which all points in this region have been filled in. The question, analogous to the
one answered by Aumann and Kruskal (1958) and Suppeés and Winet (19355) for one
dimension, then becomes this: Does a knowledge of only the rank order of the distances
between the points in this region determine the distances themselves {except for an
arbitrary scale factor}? Fortunately the transition to more than one dimenrsion entails
no qualitative changes. An affirmative answer to the question follows rather directly
from already established geometrical results.

Notice, first, that every possible distance that does not exceed the diameter of the
region under consideration will occur for some pair of points in that region. Hence
any transformation of the set of points that preserves the rank order of the interpoint
distances necessarily has the property that, if two distances were initiallv equal to
each other, they must remain equal to each other (although thev may of course change
together during the transformation). Clearly then, since all points on the (£ — 1)-
dimensional surface of any sphere are equally distant from the center point, spheres
must be preserved under the transformation. Now it is already known that every
sphere-preserving transformation is either a similarity transformation or the product
of an inversion (in a sphere) and an isometry {Coxeter, 1961, p. 104). The possibility
of an inversive transformation can immediately be ruled out, however. It preserves
neither the rank order of concentric spheres nor the equality of nonconcentric spheres,
whereas both of these invariances are required by the given rank order of the interpoint

distances. Hence we can conclude that the given rank order determines the set of
points to within a similarity transformation and the distances themselves to within
multiplicatton by an arbitrary scale factor.

The same conclusion can also be reached by considering the obvious fact that the
distribution of interpoint distances for any particular convex region approaches a
definite limiting form as n — oo. Hammersley (1950), for example, has shown that
the frequency function of distance, d, between peints uniformly distributed in a
k-dimensional hypersphere is given by

fild) = 2R (R k4 4 b), @

3 In the computer solutions described earlier this scale factor_is usualty fixed by some con-
vention such as that the mean distance among the points (or, alternatively, the mean square
distance of the points from the centroid) be unity. Further conventions can also be imposed, it
desired, to fix the position and orientation of the configuration. Sometimes, for exariiple, it is
convenient to insure that the centroid is at the origin and that the principal axes of the configura-
tion coincide with the orthogonal axes of the coordinate system.
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where the scale factor is chosen so that the largest distance is unity, and where 7,(p, )
is the incomplete beta-function ratio tabulated by Pearson (1934). Provided that the
number, z, of points is sufficiently large, then, the inverse of the distribution function
obtained by tntegrating f,{d} should permit a conversion from the rank of a distance
to a number essentially proportional to that distance. Whether such a procedure
would be useful in practice, of course, depends upon how insensitive the function
fi(d) is to departures from the assumed uniform spherical distribution of points.

In a recent investigation Benzécri (1964, 1965) examines the case in which the points
are assumed to be drawn from a distribution that 1s sphericai but normal (or Gaussian)
rather than uniform (as assumed just above). In addition to its naturalness, this
assumption has the advantage of permitting the coordinates to be treated as inde-
pendent random variables. For this case Benzécri establishes rather stronger results
than those given above. First, he defines the dimension, &, of an ordering on all
n(n — 1)2 distances among # points to be the minimum number of dimenstons (in
Euclidean space) in which that ordering can be realized. He also says of such an
ordering that it determines a configuration to within e if the difference between corre-
sponding distances of any two suitably normalized configurations achieving that
order (in Euclidean k-space) is less than ¢. (By a suitable normalization is meant, for
example, a rescaling of the configurations so that each has a maximum interpoint
distance of unity.)

If, then, the points are assumed to be sampled from a spherically normal distribu-
tion, the two theorems of Benzécri can be stated as follows: Tirst, for any specified
number of dimensions, &, and any pesitive quantities & and e, there exists an # such
that, with probability greater than (1 — 8), the order of the distances among 7 points
will be of dimension & and will determine a configuration to within e. Second, for
any number of dimensions, %, and any positive 8 and e, there exists a number, #, ,
such that all distances among » points, where # .~ 1, are determined to within e
by a well-defined function of their order; viz,,

d;; ~ F, (%E%i:ﬁiz—) , (3)

L

where 7(d,;) is the (integer) rank of the distance ,; [1 - r(d,;) 7 n(n —1) 2],and where
the function £, is the square root of the inverse x? function for & degrees of freedom
This last result depends upon the fact that, when the points are distributed normally
(rather than uniformly in a sphere, as considered above}, the squared interpoint distan-
ces will be distributed in accordance with y? (rather than as indicated in connection
with expression (2) above). Proofs for these two theorems can be found in Benzéeri's
report.

Benzécri also presents some illustrative examples that suggest that the method
(based on his second thearem) of converting ranked proximity measures into distance
estimates may have some practical utility. Still, the usefulness of the theorems them-
selves is somewhat limited by the fact that thev tell us nothing about what values of
€ and 8 can be attained for any given number of points, ». Moreover, it is known that
there exist “‘degenerate’ configurations that can be drastically distorted in certain
ways without altering the rank order of the interpoint distances. Perhaps the simplest
of these pathological cases 1s that in which the points are divided into two clusters
in such a way that all between-cluster distances exceed all within-cluster distances.
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In this case the ratio of the between to the within distances is quite indeterminate and,
can, in fact be made arbitrarily large (Shepard, 1962b). Benzécri's results indicate that
the probability of such degenerate configurations becomes vanishingly small for
sufficiently large numbers of random points. However their prevalence among cases
of practical interest remains to be determined.

MonNTE CarLO EXPLORATIONS FOR INTERMEDIATE VALUES OF &

In order to gain some more definite, quantitative information about how the
constraints tighten up as # increases over the range of practical interest, an empirical
investigation was undertaken by means of the computer method described above.
Specifically, the accuracies of computer-generated metric reconstructions were evalua-
ted in a number of cases in which these reconstructions were obtained solely on the
basis of the rank orders of interpoint distances in two-dimensional configurations of
from 3 to 45 random points.

The degree of constraint in each case was assessed by comparing the metric con-
figuration reconstructed by the computer with the original ““true” configuration from
which the rank order was initially obtained. The particular measure of agreement
chosen was the product-moment correlation of the #(n — 1)/2 interpoint distances in
the reconstructed configuration with the corresponding distances in the original
“true” configuration. The solutions were secured by applying Kruskal's steepest-
descent algorithm to an arbitrary starting configuration (sce Kruskal, 1964,
pp. 10-11).

Since the “true’ configurations were two-dimensional in every case, a two-dimen-
sional solution could always be found (in principle at least) for which the departure
from monotonicity (1) would be zero. However the reduction of this measure to zero
does not entail a perfect metric reconstruction. For a finite number of points there
generally will exist a roughly polyhedral region in the n-A-dimensional space of the
coordinates within which the desired rank order of the interpoint distances is satisfied.
The iterative process, of course, stops as s0on as it moves across the houndary into
this region. Since the gradient vanishes there, there is no longer a basis for making
any further adjustments in the configuration. What we are really interested in here
is the size of this region. To the extent that the first solution found within this region
is always very close to the true configuration, we can reasonably conclude that the
region must be small; i.e., that the configuration is tightly constrained.®

Solutions were cbtained for 120 different configurations, all constructed from a set
of random coordinates used earlier by Coombs and Kao (1960, pp. 222-223). 'Two-
dimensionality of the ‘"true” configurations was insured by using only the first two
of the three coordinates presented for each point by Coombs and Kao (viz., their
coordinates @ and 5). Altogether 45 random points were thus made available by
renumbering the 30 points in their Tabie 2 (as points 16 through 43), following the
15 points in their Table 1. Twelve subsets of these 45 points were then selected so as to
include, in turn, the first 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, and 45 points, Thus, these
12 subsets were nested in the sense that each succeeding subset contained all the points
in all preceding subsets. Another such sequence of 12 nested subsets was then con-
structed after first “circularly’’ renumbering the points, so that the points originally
numbered 10 through 45 were now numbered 1 through 36 while the points originally
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numbered 1 through 9 were now numbered 37 through 45. This process of renumber-
ing and then selecting nested subsets was repeated until five different numberings
had been completed (the sixth would have been identical to the first). This entire
process was then repeated after renumbering the points in reverse order, so that the
points originally numbered 45, 44, «-+, | were now numbered 1, 2, -+, 45, The final
result, then, was 10 different sequences each consisting of 12 nested subsets of points;
that is, a total of 120 sets.

Of course the 10 largest configurations all comprised the same 45 points, but the
fact that the numbering changed from one configuration to the next insured that the
iterative process began with a quite different starting configuration in cach of these
10 cases (see Kruskal, 19644, pp. 10-11}. This permits an evaluation of the extent to
which the result of the iterative process is influenced by the position from which
it starts. If the constraints of the data are sufficiently tight, this influence should be
entirely negligible.

T'he results are sumimarized in Table 1. For cach of the tested numbers of points ()
columns A and B present, respectively, the smallest and the root-mean-square of the
ten correlations obtained for that number. Column C gives for each number of points
similar “rms” correlations between the “true” and reconstructed distances—but
for the first three points only. Thus it 18 possible to see how the accuracy of recon-
structing the triangle formed by the first three points of each nested sequence improves
as more and more additional peints are included in the total configuration. The close
agreement between columns B and C indicates that the first points in each nested
sequence were essentially representative of the entire set of random points.

The results presented in Table | show that, while the reconstruction of the con-
figuration can occasionally be quite good for a small number of points, it is apt to be
rather poor (for n less than eight, say). As n increases, however, the accuracy of the
reconstruction systematically improves until even the worst of the ten solutions
becomes quite satisfactory with ten points and, for all practical purposes, cssentially
perfect with 15 or more points. For n > 15 the precision of the reconstruction reaches
the level where further improvements are of primarily theoretical interest only. Even
for these intermediate values of #, then, a purely ordinal scale of proximity entails,
with overwhelming probability, an essentially ratio scale of distance.

It is also clear that the number of dimensions is determined as well. Certainly, for

* With the gradient method, convergence often becomes extremely slow in the close vicinity
of the minimum. In order to keep computing time within reasonable bounds, therefore, a
decision was made that, if the measure of departure from monotenicity (1) was not reduced
to zero within 50 iterations, a configuration would be accepted as a sufficiently close approxima-
tion to the final solution if this measure was reduced at least to the value .01. (This is well
below the value, .025, that Kruskal (1964a, p. 3} qualitatively rates as an “excellent” fit.) The
effect of accepting the more lenient criterion (.01 rather than zero) is that the measures of agree-
ment between the reconstructed and the trye configurations (to be reported in Tables 1 and 2)
are biased, if at all, in the direction of underesiimating the metric precision of the reconstruction.
Moreover, failure to reduce the departure frem monotonicity strictly to zero occurred in only
about 25 %, of the cases,

The gradient method can also become very slow or, indeed, even trapped in a local minimum
while the measure {1} remains unacceptably high. Whenever this occurted, the process was
begun again from a different starting position. This proved‘to be necessary in only about 15 %,
of the cases. In the end, a satisfactory solution (with the measure (1) below .01) was achieved in
every case within a total of 150 iterations.
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TABLE 1

MoxTE CarLo RESULTS FOR ANALYSIS OF PROXIMITIES:
Accrracy ofF RECONSTRUCTION as 4 FUNCTION OF THE NUMBER OF PoINTz, n,

A B C

" min ¥ rms r rms r {triangle)
3 753 935 935

4 .896 267 972

5 .896 950 97

6 951 9381 86

7 919 980 969

8 .985 .9%4 994

9 988 996 997

10 992 998 998

15 999,79 999,91 999,96
20 999,946 999,979 .999,993
30 .999,950,6 .999,998,3 .999,998.9
45 .999,999,61 .996.999.75 .999,999,94

the larger values of n, the given rank orders could not have been accounted for by
any solution in one dimension (cf., Shepard, 1962b, p. 227). But, since a complete
account is attainable in two dimensions, there is no need to consider solutions of
three or more dimensions.

Section [l on nonmetric factor analysis has been omitted.
IV. DISCUSSION AND CONCLUSIONS

The geometrical arguments and Monte Carlo explorations reported here have
indicated that, as the number of nonmetric constraints becomes sufficiently large with
respect to the number of parameters of the spatial representation, the representation
is determined essentially metrically; specifically, to within a similarity transformation
(in the case of analysis of proximities) or an affine transformation (in the case of
factor analysis). In the first case, an ordinal scale of proximity can be converted into a
ratio scale of interpoint distance and, in the second case, several ordinal scales can
simultaneously be converted into as many interval scales, The following sect:ons
take up some further questions concerning the generality and implications of these
results,

INFLUENCE OF ERROR 1N REAL DaTa

The mathematical and Monte Carlo results have both been confined to artificial
cases in which a perfect account of the given ordinal data was attainable in a space of
low dimensionality. Owing to the inevitable contribution of error in real psvchological
data, on the other hand, one must be content with an imperfect solution. The question
therefore arises as to whether the above conclusions about the recoverability of
metric structures also applies when the data from which we start are not onlv merely
ordinal but fallible as well.

The evident success of numercus applications to real psychological dara indicates
that this is, in fact, the case {e.g., Klemmmer and Shrimpton, 1963; Kruskal. 1964a:
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Shepard, 1962b, 1963, 1964, 1965). In the case of analvsis of proximities, Kruskal
(personal communication) has also invesitgated the robustness of the solution by
imposing random deviations on artificially generated data. Generally, 2 moderately
high level of added “‘noise” can be sustained before the recovered configuration suffers
serious deterioration. Again, since the overdetermination of the solution apparently
derives from the domination of #? over  (or, more strictly, of n(n — 1) 2 over n - £
for a fixed number of dimensions, k), the invulnerability to error should increase
with the number of points, .

Indeed, the analysis can be regarded, in part, as a technique for purifving noisy
data. Since errors often are relatively independent, their effects tend to cancel out in
a solution of small dimensionality. Just as a regression line is usually a better predictor
of further observations than the individual points upon which it was based, a spatial
representation of the type considered here can be both more reliable and more valid
than the fallible data from which if was derived.

Of course it is always possible to add so much noise that the underlving structure
is completely obscured. This situation (which, fortunately, has seldom arisen in
practice} can be recognized by the fact that quite different but locally optimum con-
figurations can be found for which the measure of departure from monotonicity has
approximately the same (nonzero) value.

CONTRIBUTION TO THE PROBLEMS OF REDUCTION AND INTERPRETATION OF 1)ATA

An impertant advantage of a satisfactory solution, when it does prove attainable, is
that it furnishes a more parsimonious representation of the original data. In the case
of the analysis of proximities, for example, the initially given n{n  1)/2 proximity
measures can then be reconstructed from just » - & coordinates (where, generally
the number of dimensions, &, is much smaller than #). "T'hus, in a reanalysis of Ekman’s
{1954) data on the subjective similarities among 14 colors, it was found that the 28
coardinates for the colors in a two-dimensional solution (resembling the conventional
“color circle”) provided a sufficient basis for the essential reconstruction of all 91
of the original similaritv estimates (Shepard, 1962b). Such a complete reconstruction
-could not, of course, be achieved on the basis of a purely nonmetric solution (like
that described by Coombs, 1964, p. 493) which, as was already noted, cannot contain
all of the original information.

The reduction to a more concise representation is not, in itself, the only advantage

. to be gained from such an analysis however. Perhaps even more important is the
finding that such a representation sometimes provides an insight into the numbér
and nature of the psvchologically important dimensions underlying the empirical
data. Thus, a “proximity” analysis of Rothkopf’s (1957) data on confusions among alt
36 dot-and-dash signals of the Morse code, indicated that the subjects’ responses
were primarily governed by just two dimensions of the signals; viz., the total number
of components (whether dots or,dashes), and the ratio of dots to dashes among these
components (Shepard, 1963, Fig. 2). Likewise, in a more recent analysis of confusions
among 10 vowel phonemes, a three-dimensional solution was obtained in which the
three axes were found (after rotation) to agree closely with the frequencies of the first
three formants (or resonances) of these sounds as measured physically (Shepard, 1964).

A purely nonmetric solution of the type proposed by Hays can in principle provide
information, too, about the underlying dimensions (cf.,, Coombs, 1964, p. 486).
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However, although alternative nonmetric solutions can be obtained for the same
data, there seems to be no basis for rotating axes so as to achieve correspondences of
the kind just mentioned in connection with the metric solution for the 10 vowel
sounds (see Coombs, 1964, p. 494). This, again, is a curious aspect of the nonmetric
solutions, since the data themselves are strictly invariant under orthogonal rotations
of the underlving configuration (from which those data are presumed to derive).
The practical consequence is that, unless the axes of the selution happen to come out
with a lucky orientation, nonmetric solutions in three or more dimensions may be
relatively difficult to interpret. In the case of metric solutions, on the other -hand,
objective procedures are already available for rotating axes so as to facilitate inter-
pretation (Carroll and Chang, 1964a; Miller, Shepard, and Chang, 1964).

Whether the method of nonmetric factor analysis considered here will also prove
useful in the reduction and interpretation of real psychological data remains to be seen
as this new method is applied, too, to empirical data of substantive interest.

ExTensioN To OTHER CASES

Analysis of proximities and nonmetric factor analysis are not the only cases in
which the number of given nonmetric constraints can exceed the number of param-
eters of the solution. Possibly, therefore, other classes of ordinal data mav also be
found capable of yielding essentially metric solutions.

Pair-comparison data represent one class that has already been examined from this
viewpoint. - Klemmer and Shrimpton (1963), for example, modified the method
originally proposed for the analysis of proximity measures (Shepard, 1962a) in such
a way that it will converge, when possible, upon a one-dimensional preference scale
in which the distance between the positions of two objects, A and B, on the scale is
monotonically related to the absolute difference between the number of subjects
who choose A4 over B and the number of subjects who choose B over d. This method
avoids the strong parametric assumptions of Thurstone’s Case V. Yet. when it was
applied to Thurstone’s own data (Thurstone, 1959), it vielded a scale that correfated
999 with the scale that he had originallv obtained by means of a Caze V analvsis.
Moreover, the minute changes that did appear in the new scale evidently were in the
direction of permitting a slightly better reconstruction of the original data { Klemmer
and Shrimpton, 1963, p. 167). )

Carroll and Chang (1964b) have developed a computer program for the analysis of
pair-comparison choices that differs from that of Klemmer and Shrimpton in that it is
specifically designed to provide solutions in two or more dimensions and. thereby,
to account for reliable differences in the preferences of different subjects. The basic
model closely resembles that for the varietv of nonmetric factor analysis already
considered above, except that the initial data consist (for each subject) of the individual
pair-comparison choices (e.g., @ — 1 or — I for each ordered pair of stimuli) rather
than a single rank order of all # stimuli. Correspondingly, the algorithm. instead
of minimizing the measure of discrepancy adopted for nonmetric factor analysis (4).
minimizes the sum of squared distances between those projections (of individual pairs
of points on individual axes) that do not fall in the pair-ecise order prescribed by the
data. Under appropriate conditions such a minimization has been found capable
of recovering metric configurations (again, to within an affine transformation). As in
the case of nonmetric factor analvsis, however, the method seems to be somewhat
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susceptible to degeneracy (as, for example, when one stimulus is preferred to all
others by ali subjects).

A final example concerns a somewhat different type of application. Iterative algo-
rithms resembling some of those mentioned here have recently been employed to
transform data matrices so as to achieve an “additive structure” (Goode, 1964;
Kruskal, 1965; Morey and Yntema, 1965, Appendix). The objective is to find a
monotonic transformation on the entries of the matrix such that cach transformed
entry can be expressed, as nearly as possible, as a sum of two numbers; onc characteriz-
ing its row and one characterizing its column. 'I'versky (1964) has established a
necessary and sufficient condition for the achievement of additivity in this sense, and
Kruskal (1965) has actually obtained solutions that proved to be cssentially unique
{to within a linear transformation). Again, however, there are degencrate cases that
fail to vield a properly determinate solution (as when all entries in onc row or column
of the matrix exceed all other entries).

When a determinate solution is achievable, the transformatnon to additivity provides’
a verv general method for removing undesired interaction effects in the analysis of
variance. For “nondegenerate’ matrices of sufficient size it can also yield, at the same
time, a conversion from a purely ordinal scale of the cell entries to an essentially
unique interval scale. Thus another type of application of algorithms of this kind is
to the construction of metric scales in accordance with the general scheme of “simul-
taneous conjoint measurement’’ proposed by Luce and Tukey (1964).

Incidentally, an important aspect of the scheme proposed by Luce and Tukey,
as they point out, is that it replaces “derived measurement,” which has been charac-
teristic of the behavioral sciences, with ‘“‘fundamental measurement,” which was
previously restricted to the physical sciences (see Suppes and Zinnes, 1963). However
all of the methods considered here for extracting metric representations from ordinal
data would seem to qualify as fundamental measurement in this sense.
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6 A Simple Approximation for Random Ranking
STRESS Values*
lan Spence

Most users of nonmetric multidimensional scaling programs
compare the obtained stress values to the results obtained from
Monte Carlo studies in which random data have been scaled. This
is done in order to be sure that the empirical data set being scaled
is not essentially random, but contains some genuine underlying
structure. This comparison is extremely helpful in determining
whether a scaling solution is meaningful since sealing programs
will provide a solution just as happily with nocise as with good
data. Consequently, experimenters consult the results of Klahr
(1969), Wagenaar and Padmos (1971), Stenson and Knoll (1969),
or Spence and Ogilvie (1973). The first two sources are rather
limited in their practical usefulness since Klahr (1969) contains
comparison data for N < 16, while Wagenaar and Padmos (1971)
investigated a maximum of N of only 12, where N is the order of
the dissimilarity matrix and is equal to the number of objects being
scaled. Therefore, the most useful data are those of Stenson and
Knoll (1969) and Spence and Ogilvie (1973); in the former case
N ranges from 10 to 60 by steps of 10, and in the latter case
ranges from 12 to 48, Stenson and Knoll (1969) only provide a
graph of their results, thus necessitating visual interpolation,
which can be inaccurate; Spence and Ogilvie (1973) used a com-
bination of regression and graphical interpolation to provide a
table which is probably more convenient and accurate from the
uger's point of view, This table ranges from 12 to 48 by steps of

one,
More convenient than either a graph or a table would be a

direct and simple analytic expression which would take as argu-
ments N, the number of points, and D, the number of dimensions,
and would yield the stress value expected if random data had

*reprinted from Multivariate Behavioral Research, 14, 1979, pp. 355-365
In memoriam, John C. Ogilvie 1924-1978.

This research was supported by Grant A8351 from the National Research
Council of Canada.
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been scaled. Such a function could be evaluated by one or two
FORTRAN statements inserted by the authors (or users) of multi-
dimensional scaling programs and output as a matter of course.
Then even the inexperienced user would immediately be aware
when his data were close to being random. Alternatively, it would
be a simple matter to use an electronic minicalculator to compute
the function value. In their 1973 paper, Spence and Ogilvie were
unable to find a satisfactory analytic approximation; in this paper,
by using exploratory data analysis techniques in the spirit of
Hoaglin (1977), such a funetion is provided.

METHOD

The data were ol-tained from a study by Spence and Ogilvie
(1973) and an extended description may be found there. (As will
be shown later this set of data is not subject to inflation by local
minimum problems, and thus represents a suitable basis for the
analytic approximation.) Briefly, a nonmetric scaling program was
used to scale pseudo random data for N = 12, 18, 26, 36, and 48
points, obtaining solutions in D = 1, 2, 3, 4, and 5 dimensions.
Fifteen replications were obtained and the resulting mean stress
values are shown in Table 1. The next step was to determine

Table 1
- Monte Carlo Mean Stress Values
Dimensionality
Points 1 2 3 4 b
12 408 222 131 082 051
18 469 291 197 144 107
26 607 a7 284 178 144
36 627 362 260 204 168
48 543 870 279 222 187

Note.—Unit of measgurement is 0,001

whether an additive structure would adequately describe the en-
tries in this table. This was done by *polishing” the table, after

the fashion of Tukey (1977); this merely involves double center-
ing the table by subtracting out the row and eolumn effects (in

the analysis of variance sense), leaving the residuals in the body
of the table. If the entries in Table 1 can be adequately recon-
structed by an expression of the form:

Entry = Grand mean + row effect + column effect
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the residuals should be close to zero. As can be seen from Table 2,

Table 2
Residuals and Effects after Polishing
Dimensionality Row
Points 1 2 3 4 b Effects
12 001 —006 004 002 005 ~086
18 001 001 =000 000 ~002 22
26 002 001 000 -002 —002 014
36 -001 002 001 ~000 001 038
48 ~004 001 003 000 001 056
Colutnn Grand
Effects 226 048 -044 -098 -183 Mean = 264

Note..—Unit of measurement is 0.001

this is indeed the case and suggests that stress is an additive fune-
tion of N and D and can, in principle, be predicted using an equa-
tion of the form:

[11 Stress = a0 + 1 £(D) + a= g(N)

where £(D) is some monotone function relating the number of di-
mensions to the column effects, and g(N) relates the number of
points to the row effects. The g; constitute a set of appropriate
congtants.

Figure 1 adds further support to this notion; in it the data
are displayed in a two-way plot (“forget-it-plot”). In such a plot
{Tukey, 1977) the vertices and line intersections of the lattice
coincide with the stress values predicted by the additive relation:
Stress = grand mean 4+ row effect + column effect, The residuals
are plotted vertically and show the deviation of the actual means
from the means predicted by the additive model. In this case, the
residuals have been magnified by a factor of ten so that they can
be seen more clearly. It is obvious that an additive structure

describes the data very well.
Also, it can be seen that stress changes less rapidly when N and D

become large, suggesting the need for negatively accelerated trans-
formations.

In order to find a suitable f(D) it seems natural to plot the
column effects against D. This has been done in Figure 2. An
obvious candidate is the logarithmic function, and indeed when a
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600 RESIDUALS MAGNIFIED TENFOLD OTEOO
500- ~500
400+ ~400
300 ~300
200~ -200
100 -100
OJ RESIDUALS MAGNIFIED TENFOLD Lo

Fig. 1. Tukey two-way plot

log function is fitted by least squares the approximation is very
good. A similar plot and regression has been performed to find a
suitable approximation for g(N), and the results are shown in
Figure 3. Here a log function is not sufficiently extreme and a
better fit is obtained by using (In N)%, the square root of the
natural logarithm.

Consequently, it seems that the data of Table 1 might be well
described by an approximation like:
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COLUMN
EFFECT
®
Column Effect = 216-225 InD
200} i = 0.993
100}~
O
-100
! | L ]
| 2 3 4 5
DIMENSIONALITY(D)
Fig. 2. Column effects vs. dimensionality
[21 Stress =gy + a;InD + gz (In N)%

Although this works fairly well, the following equation has been
found to provide a little more accuracy:
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ROW
EFFECT
00
Row Effect ¥ -642+ 359 (InN)"/2
r?z 0.976
S50
0_.
-50F
™
| ] ! ] i
12 I8 26 36 48
NUMBER OF POINTS (N)
Fig. 8. Row effects vs, number of pointa
[3] Stress map + ay D +as N +azsIn D + a4 {In N)%

Consequently, it was decided to include the linear terms. Using
ordinary least squares to fit this equation to the original data (5
Levels of Points x 5 Dimensions x 15 Replications = 375 Data
values), the following estimates for the regression coefficients
were obtained:
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ap = =—524.25
a4 = 33.80
a = — 254
as = —307.26
e = 58835

The coefficient of determination R? was 0.9963, and the associated
regression ANOVA (not shown) yielded a lack of fit Mean Square
which was one fifth the size of the replication variance. The ap-
proximation clearly fits the original data exceedingly well.

A more compelling way of demonstrating the adequacy of the
approximation is to compute expected values for N = 12, 18, 26,
36, and 48 for D = 1, 2, 8, 4, and 5, and then compare the
resulting numbers with the mean stress values in Table 1. Table 3
presents the values computed using the approximation, and the dis-
crepancies between the Monte Carlo means and the approxima-
tions are listed in brackets. The largest absolute discrepancy is
.006 and the mean discrepancy is .003. This compares very favor-

Table 3
Stress Values from the Approximation
and Errors of the Approximation

Dimensionality
Points 1 2 3 4 5
12 407 227 187 082 047
(--001) {—005) (—006) (+000) {+004)
18 464 285 194 1490 106
(+005) {+006) (+003) (+004) {+002)
28 605 326 236 181 146
(+002) {+001) (—002) (—0038) (—002)
36 532 868 262 207 178
(—005) {—001) (—002) (—0038) (—0056)
48 5§46 866 275 221 186
{—002) {+004) (+004) (+001) (+001)

Note.—Unit of measurement is 0,001, Entries in brackets are the differences
betl'.ween the original Monte Carlo means and the approximation
values,

ably with the estimated standard error of the means in Table 1,
which turns out to be about .002 (Y pooled within cell variance/15).

COMPARISON WITH OTHER RESULTS

Some readers may harbor a lingering suspicion that the Monte
Carlo data of Spence and Ogilvie (1973) are subject to an unknown
degree of distortion caused by local minimum problems and that
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INTERPRETATION

7 Precipitin tests as a basis for a comparative

phylogeny*
A. Boyden

In an earlier report® the results of a series of precipitin tests on
the sera of certain common Mammalia were given. The degree of
reaction as indicated by the titer of the ring tests was expressed as
percent of the homologous titers. A new method of using these
percent values as a basis for a quantitative phylogeny is here pro-
posed and illustrated.

The method involves the calculation of the average values of the
reciprocal relationships between pairs of species. These average
values (M) constitute the primary data to be used. The values of
M together with their probable errors are given in Table 1.

TABLE I

Average reciprocal values of inamma-lian sera (M) together with their probable
errors, and the values of 100-M for all the specivs tosted reciprocally.

Species M(%) P.E., 100-M
Dog vs. Horse 4.9 +1.49 95.1
¢6 4¢  Bheep 5.5 +1.37 94.5
€ ¢ Pig 6.2 *0.87 93.8
¢ 4¢ Beef 10.5 +*+15 80.5
Beef vs. Horse 9.4 *+1.08 90.6
¢ ¢ Pig 13.2 =+0.78 86.8
¢ ¢ Bheep 69.3 +4.7 30.7
Sheep vs. Horze 3.7 #+0.79 96.3
f6° ¢t Pig 7.7 +0.92 92.3
Pig vs. Horse 5.5 +0.98 94.5

The least reliable value (dog vs. horse) is still 3.3 times its P.E.,
and hence the whole series is probably significant. To express these
quantitative measures of relationship graphically, it is proposed to
use the corresponding 100-M values for the actual distances be-

*reprinted from the Proceedings of the Society for Experimental Biology and Medicine, 29,
1931, pp. 995-957
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perhaps the alternative device of using the minimum stress solu-
tion from a large number of random starts should have been used
{Arabie, 1978). A recent study by Null and Young (1978) shows
clearly that this is not the case; some of their results are summar-
ized in Table 4. Uging identical random data sets, Null and Young
used four alternative starting strategies with the same nonmetric
algorithm (KYST): the Kruskal I-shaped configuration, a single
random start, the best of 22 random starts (in terms of sfress),
and the TORSCA initial configuration routine. Five replications
were obtained. Not surprisingly, the Kruskal L-start and the single
random start performed poorly (c.f. Spence, 1972). The best of 22
random starts did much better, but it is important to note that
this strategy did not systematically outperform the single TORSCA
start (The TORSCA start led to a lower final stress on 13 out of
24 oceasions, although the absolute numerical differences are very

gmall). Thus, for all practical purposes, there is no real difference
between using the best of 22 random starts, and a single TORSCA
start except, of course, that it will cost you about 20 times as much
in computer time. Using a single random start or a Kruskal L-start,
is not a sensible strategy.

It is clear that the present approximation yields values which
are very close to the independently obtained minimum values of
Null and Young (1968), Indeed, even including the 10 point results,
where there may easily be underdetermined solutions, the average
discrepancy between the approximation values and the smallest of
the values from 24 different starts is only .006. This is all the more
remarkable when it is realized that the Spence and Ogilvie study
did not collect any Monte Carlo data for 10, 15, 20, 25, or 30 points!

The discrepancies between the present approximation and
Table 2 of Spence and Ogilvie (1973), which it is intended to re-
place, are also very small. This may be inferred from the values
shown in the final column of Table 4,

Although it is not possible to make precise numerical com-
parisons with the data of Stenson and Knell (1969}, since their
results were presented in graphical rather than tabular form,
careful graphical interpolation shows that there is a very close
correspondence between their results and the present approxima-
tion. This suggests that the approximation may be used with
confidence in the range 10 < N < 60 and 1 < D < b, even al-
though it was developed for 12 < N < 48.
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DIscussIioN

Since the approximation yields values which are indistin-
guishable (within the limits of sampling error) from the actual
values obtained from using a TORSCA start or a multiple random
start, it may safely be used with the TORSCA-9 program, or the
KYST program using either a TORSCA start, or the best result
from about 20 random starts. Further, since Spence (1972) has
shown that there is little to choose between the SSA-I and TORS-
CA-9 algorithms, the present approximation can probably be used
with SSA-I, providing the option to minimize stress in the final
stage is selected by the user. Similarly, given the strong resem-
blance of MINISSA-I to SSA-I, the approximation can probably
be used with confidence with that program.

Regarding the use of random rankings stress values, it is the
opinion of the present author that they should not be used in a
rigid classical hypothesis testing fashion (c.f. Spence & Ogilvie,
1973, p. 516; Spence, 1978, p. 214). The greatest benefit to be
gained from a comparison of empirical stress values with random
rankings stress values is that the investigator obtains a good intui-
tive feeling for the worth of the data. If the obtained values are
well below the random values, say only a third or a half as large,
then one can be fairly sure that the data are good. On the other
hand, if the obtained values are rather close to the random wvalues,
then one should be very ecareful even though the hypothesis of
randomness may be rejected in some technical sense. (For those
who may wish to construct formal tests, however, the standard
deviation associated with values produced by the approximation
can be taken as .01—the square root of the replication variance.)

Finally, it is noted that the approximation has been incor-
porated into the M-SPACE program (Spence & Graef, 1974), re-
placing the stored table of random rankings stress values which
was previously employed.

REFERENCE NOTE

1. Null, C. H. and Young, F. W. A Monte Carlo investigation of initial
configurations strategies in KXYST, Presented at the European Meeting on
Paychometrica and Mathematical Paychology, University of Uppsala, Uppsals,
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