Characteristics of MIDS
5 Models

The old order changeth. vielding place to new
And God fulfils himself in many ways.,
Lest one good custom should corrupt the world
Tennyson (Idylls of the King)

We have used three basic characteristics to define the basic MDS model. These are:

Tvpe of data
Transtormation (rescaling ) tunction ( or level of measurement )
Form of model.

In this chapter we shall use these characteristics to differentiate and describe other
programs in the MDS(X) series. Programs from other sources can be described in
precisely the same way. This three-fold characterisation is akin to the new typology
of scaling programs developed by Carroll and Arabie (1980) in their definitive
review of scaling developments of the past seven years.

We begin by giving a fully-specified description of the basic model and then
proceed to a discussion of the various ways in which types of data, transformations
and models can be extended. These characteristics will be used to describe the
MDS(X) programs for the anakysis of 2-way data in the next chapter and for the
analysis of 3-way data i Chapter 7.

The basic model: a fuller specification
The basic model has already been defined (section 3.1) as follows:

BASIC NON-METRIC MODEL
The analysis of

i{Characteristic) (Specification)

(DATA) A square symmetric 2-way table of (dis)similarities
(TRANSFORMATION) bv a monotonic rescaling function

(MODEL) using a simple Euclidean distance model

Enlarging on this specification we might describe the basic model as in Table 5.1.
Each of the aspects appearing here is taken up in the following section.

5.1 Data
By data in this context we simply mean information input to the program. Even for
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118 The User's Guide to Multidimensional Scaling

BASIC NON-METRIC MODEL EXTENSIONS
Characteristic Specification
DATA The
INTERNAL analysis of a External
2-WAY 3- and higher way/modes
SQUARE (Unconditional) Non-square. rectangular.
SYMMETRIC triadic ...

matrix of (dis)similarities

TRANSFORMATION By a

FUNCTION GLOBALLY Locally
MONOTONIC Linear. Power. Continuity ...
rescaling
MODEL Using a
SIMPLE Weighted
EUCLIDEAN Other Minkowski and
non-Minkowski metrics
DISTANCE model Additive. Subtractive.
Multiplicative

(scalar product factor) . ..

Table 5.1  Fuller specification of basic MDS Mode/ and extensions

the basic model, which assumes a square, symmetric (or lower triangular) array of
data, the information might either be pairwise similarity ratings obtained directly
from subjects, or else indirect measures of co-occurrence, covariance. contingency.
association etc.. obtained by aggregating over simpler data. as we saw in
Chapter 2. The source of the data does not concern us; the form of the data and its
interpretation do.

The distinctions referring to data which are made in Table 5.1 are between:

(1) the way and mode of the data; and
(1) 1internal and external analysis

We shall consider each in turn.

5.1.1 The ‘way’ and ‘mode’ of data ;

The ‘way’ of data is simply the dimensionality of the data array. ‘One-way" data
would simply consist of measures on a single set of objects, such as one individual’s
set of preference judgments of the loudness of a set of tones, or the frequency of a
particular plant species on a set of geographical sites. Since one-way data are never
scaled as they stand, they need not be examined in detail here.

Two-way data take the form of a matrix consisting of rows and columns. and
relate a pair of entities. To say that a set of data is two-way says only that it may be
represented in a single matrix. It does not tell us whether the matrix is square or
rectangular, symmetric or asymmetric.

In order to make such distinction, the notion of mode is introduced. In a two-
way matrix, the rows and columns may refer to the same set of objects or to distinct
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sets. If the rows and columns refer to the same entities—and the matrix is thus
necessarily square—then the matrix is said to have one mode. the one set of entities
represented. If. on the other hand. rows and columns refer to two distinct sets, then
the data are said to have two modes. The mode of the data therefore is the number
of distinct sets of entities to which it refers.

Normally, of course. two-way. two-mode data form a rectangular matrix with,
conventionally, *data producers’ (individuals, groups. locations) as row-elements.
and objects (stimuli. attitude statements, symbolic entities) as column-elements;
but two instances where this is not the case are apparent. which clarify the
usefulness of this way/mode distinction. The first is where the number of row-
clements happens to be equal to that of the column-elements. and the second where
the row- and column-entities are in fact the same but are considered distinct for the
purpose of analysis. e.g. firms considered as producers and consumers. members of
a group as rankers and ranked in a sociometric exercise.

The extension to higher ways and modes should be obvious. and these are
considered later in Chapter 7.

1.0 Asvmmetric data
Of particular interest are those data matrices where the row and column elements
happen to refer to the same objects—so the matrix is square—but where the
elements J, and ¢,; are considered distinct. Such data’ occur as sociometric
rankings. occupational-mobility turnover tables, economic input-output tables,
migration and communication flows. citations within and between journals. and
confusion between pairs of auditory stimuli presented in a left-right and right-left
order.

At first sight it may seem perverse to wish to represent such data by what is. after
all. bv definition a symmetric distance model. Several ways have been proposed to
deal with this anomalw; i

(i) to treat the asymmetry of J, and J,; as "noise’ or chance error and simply
symmetrise the data by replacing the corresponding entries by their median. or by
the arithmetic or geometric mean. Such a treatment. of course. simply defines the
problem out of existence and the resulting symmetrised data matrix can now be
analvsed by the basic model.

(i1 to treat the asymmetric information as consisting of two distinct
components, each of which is capable of being represented separately by the
distance model: the "flow’ from j to k and the *flow’ from k to j. This alternative was
discussed in section 2.2.3.4 where the index of dissimilarity was used to compare
both row percentages (outtlow) and column percentages (inflow). Typically, the
two resulting matrices of outtlow and inflow coefficients are scaled separately by
the basic model, and the solutions are then compared (see. for instance.
Macdonald 1972. pp. 214-27 and Blau and Duncan 1967. pp. 67-75).

(iii) to treat the asymmetry as arising from the conditional nature of the data.
but not as a characteristic needing separate representation. The entries within the
same row of the matrix will be treated as being comparable, but information

“between rows will not.
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This interpretation is most relevant where data have been collected by the
method of conditional rank orders (see Rao and Katz 1971. p. 470) or. in Coombs’
terminology. ‘order (p — 1) out of p stimuli". In this method the subject is
presented with each stimulus in turn. She is then asked to rank each of the other
stimuli in terms of their similarity to the reference stimulus. thus generating what
amounts to a set of p I-scales. with each stimulus in turn serving as the "ideal point’.

In this last instance, the stimuli are represented as a single set of points. although
the entries 6, and ¢, ; will normally be fit by distinct disparity values. (This 1s the
model fit by MiNICPA described 1n section 6.1.2.) Another alternative is to treat the
row and column elements as distinct points. Thus each "stimulus as subject’ (rows|
and each ‘stimulus as object’ (columns) will be represented as separate points. This
option also treats the data as providing conditional distance information and 1s
identical to the unfolding model described in 5.3.3.1. It is implemented by the
MINIRSA program.

(iv) to treat the asymmetry as something extrinsic to the distance information
and represent it in some other wav. A number of ways have been proposed.
including representing asymmetry as contours and as ‘jet-stream’ directions over a
conventional scaling configuration. and are discussed in Gower (1977).

(v) to interpret the data as a graph with each distance represented as a link
between two points, allowing the distance i — j t3 be different in length from j — i
(see 6.1.2).

5.1.2 Internal vs external analysis

The distinction between internal and external analysis was made in Chapter 4 with
regard to the interpretation of configurations. There we noted that in internal
analysis it was the original data only that were used in the interpretation while
additional information was brought to bear in the external case. Generally
speaking, internal analysis. or ‘unconstrained’ solutions (Carroll and Arabie 1980).
uses only the information given to generate the solution, while external analvsis
(‘constrained’ solutions) takes one part of the input as fixed and relates the data to
that fixed ‘external’ part.

5.2 Transformations ,

Whilst the full range of Stevens’ levels of measurement may. in principle. be used in
scaling, only a small number have in fact been used. and in the MDS context the
only ones which concern us directly are the nominal, ordinal. interval and ratio
levels. By and large, most data are at the nominal and ordinal level—or researchers
with justifiable caution consider their data so to be—whereas most scaling
solutions are at the ratio level (e.g. distances) or occasionally at the interval level
(e.g. solution scales from conjoint measurement).

The transformation function. rescaling the data into distances. normally
matches the level of measurement of the data. For our purposes. the most
important transformations are the monotonic (ordinal) and regular (linear or
logarithmic) rescaling functions, but we shall also consider the ‘continuity’ or
‘smoothness’ transformation, which does not fit easily into the conventional levels
of measurement, having affinities with both monotonic and metric scaling.

————
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Although nominal rescaling functions have been developedt they are not widely
employed in programs in the MDS(X) series other than ssa(M) and are not

considered further.

5.2.1 Monotonic transformations

The monotone relation is best illustrated by the Shepard diagram (Figure 3.11 et
seq.), where fitting values (d°) are joined up to form a jagged monotonic ‘curve’.
The line segments drawn to join up the fitting value points are simply an aid to
visualising the relationship and show that the relationship between the data and
distances is ascending (in the case of dissimilarities) or descending (in the case of
similarities). But the slope of the segments has no intrinsic meaning whatever since
it depends in part on the purely arbitrary ordinal scale of the data.

In most MDS applications the shape of the monotone curve is characteristically
very jagged and ‘steppy’, especially if there are ties in the data and weak
monotonicity has been used as a criterion in monotone regression (see section
3.2.3). But users should be alert to signs of smoother regularity in the monotone
curve. Two particularly important. and more regular, forms of the monotonic
function are the straight line and power function curves (including the exponential
and logistic curves). All of these variants of monotone relationships are iliustrated
in Figure 5.1.

An actual example of a monotone regression function approximating a linear
function is seen in the Shepard diagram of Figure 3.2; the co-occurrence data
scaled in section 3.6 provide a fair approximation to a (negative) exponential
function (Figure 3.14b), and the relation between the rank of a mileage and its
recovered distance exemplified in the Scottish mileages data is very well
approximated by a logistic function (Figure 3.4). Whenever a more regular
function is discerned, the data should then be re-analysed using the appropriate
scaling transformation.{ (Linear and power transformations are permitted in the
MRSCAL program). )

3.2.1.0 Local and global monotonicity

The monotonicity criterion requires that all the data should be monotonic with the
distances (global monotonicity). On occasion this may be thought too restrictive
and monotonicity be only required locally, i.e. around the neighbourhood of each
point, hence the term ‘local monotonicity’.

A familiar example of the local monotonicity principle occurs in geographic
mapping where ‘stereographic projections’. which seek to represent the earth’s
three-dimensional surface as a two-dimensional map, are commonly used. Clearly,
this cannot be done without some distortion, and the various geographic
projections - preserve different aspects of distance. The ‘conformal mapping’
projection involves a principle very similar to local monotonicity, since smaller
distances are accurately represented but larger ones are not. Hence the distortion is

+*Nominal rescaling functions are employed in the Multiple Scalogram Analysis option inssa(M) and in
allied programs in the Guttman-Lingoes series (Lingoes et al. 1979, pp. 274-7: Zvulun 1978) and
nominal rescaling is permitted as an option in the aLscaL program (Takane et al. 1977) for analysing 2-
and 3-way data.

+Shepard (1974, p. 395 et seq.) describes a number of other approaches to constraining the monotone
function to convexity, concavity, smoothness, etc.
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(i) Power or logarithmic (i) Logistic
[y= 8% x=log,y] [y=k/(1~ e+ bx)]
(iii) Linear (iv) Irregular monotonic
[y=a+bx]

Figure 5.1  Monotone curves

concentrated in the largest distances and this fact needs to be taken into account in
reading the map. The same principle applies in MDS solutions derived by use of
this criterion.

There are two cases where it is useful to use the local monotonicity criterion. one
being when ceiling effects occur in the data producing the familiar C-shape. or
horseshoe shape. discussed in section 4.3.2.1. To overcome this effect. the remedy is
fairly simple: ignore or down-grade the importance of the largest data
dissimilarities. This can be implemented as follows:

(1) by choosing the local monotonicity option in ssa(M); or

(i) by using a program such as PARAMAP which implements ‘continuity’
transformation, one of whose features is to act like a local monotonicity constraint
(see 5.2.2 below).

Both options have similar and often dramatic effects—in ‘unbending’ highly non-
linear simple structures.

The second use of local monotonicity is to map a high-dimensional solution into
a space of lower dimensionality. This procedure is acceptable if local structure is of
primary interest and larger distances which will be distorted can be ignored. It
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should be noted, however, that Graef and Spence (1979) have shown that the
largest distances do most work in producing an MDS solution and they can be
critical in the satisfactory recovery of a configuration.

5.2.2 Continuity (smoothness) transformations

In basic non-metric scaling a best overall monotonic fit is sometimes achieved by
producing sudden changes in distance values which do not exist in the data values. If
we are firmly committed to the assumption that there really is no information in our
data other than the order of the dissimilarities. well and good. But if we believe that
the data contain more than simple ordinal information then these sudden
discontinuous jumps may well distort the local structure. producing high distance
values to correspond to very close data values. In this case, it might be better to
concentrate on minimising or smoothing out the jumps by making the relationship
between the data and the distances of the solution as ‘smooth’ or ‘continuous’ as
possible. even at the cost of worsening the overall monotonic fit. This can be done
by requiring that when two data values are close to each other, then there should
be little difference (or variation) in the corresponding distance.

This basic idea of continuity can best be illustrated by a simple example of a one-
dimensional solution. Suppose we wish to examine the relationship between the
phvsical loudness of a set of six tones. x, to x¢, and their perceived loudness. y, to
v,. Our attention will concentrate. as we move up the scale, upon whether
perceived differences in loudness change in the same manner as physical differences
do.

If we say that the y values seem to change in a ‘continuous’ manner as we move
along the underlying x continuum. we are essentially saying that the change in y
as we move from one x valug to the next tends to be small compared to the

change in y generally assocxated with larger jumps in x.
(Shepard and Carroll 1966, pp. 579-80)

In Figure 5.2 two examples of such a relationship are given: one where small
changes in x are not associated with small changes in y, a relatively discontinuous
relationship (Figure 5.2a), and another (Figure 5.2b) where small changes in x are
associated with small changes in y. a relatively continuous relationship.

The extent to which the relationship between x and y is smooth or continuous
can be monitored by a simple index which compares changes in y to changes in x,
for each of the adjacent pairs along the scale. This can be done by taking the
differences between adjacent values of both x and y and finding the ratio:

Difference in v Ay v, — ¥,

Difference in x  Ax X; — Xy

Clearly. when the relationship 1s smooth or continuous, 4y and A4x will be almost
the same and the ratio will be about 1. But if small changes in x produce large
changes in v, then the ratio will be correspondingly large. A simple overall measure
of discontinuity (DISCONT) is constructed by squaring the ratio (both for
computational simplicity and to draw attention to particular gross discontinuities)
and then summing over the adjacent pairs:
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Figure 5.2 Discontinuous and continuous relations between two continua
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This measure is calculated in the boxes alongside the two examples in Figure 5.2.
The relatively continuous relation (B) has a value close to 5 (the minimum value of
DISCONT), and the discontinuous relation (A) has a value of 68.33. (Note that in this
latter case the value of DISCONT is most affected when small differences in x are
accompanied by large differences in y, e.g. for (a. b) and (c, d). By contrast. where
large changes in x give rise to small changes in y the contribution is very small. and
this measure will be largely insensitive to them.)

5.2.2.1 Kappa as an index of continuity

The continuity transformation is used in MDS to obtain a solution where
differences in the data correspond as smoothly as possible to differences in the
solution differences. To do this we need the use of measure such as DISCONT. rather
than stress. But in adapting DISCONT to measure the discontinuity between
multidimensional spaces (rather than uni-dimensional continua) we run into a
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problem. With a single line, the idea of a small change in value as we move up the
continuum is easily defined: it is the difference between adjacent object locations.
The notion of ‘difference’ generalises perfectly easily to ‘distance’ in the
multidimensional case, but a little thought will convince you that there is no
equivalent to "adjacent’ points in a two (and higher) dimensional space. But there is
an approximation that will suffice: "adjacency’ can be replaced by ‘closeness’ or
‘relative proximity’ so long as we take care that only information relating to the
immediate vicinity of each point is taken into account. In constructing an index of
discontinuity in the multidimensional case, we shall therefore want to emphasise
the distance involving closely proximate points and successively de-emphasise
those at increasing distance. (This is obviously a further instance of local
monotonicity described in the previous section.) In the context of MDS, the
DISCONT measure is known as the ‘kappa’ index, symbolized by x. The simplest
measure on the analogy of stress, is referred to as ‘raw kappa’ and consists of two
components. a discontinuity ratio and a weighting factor which restricts attention
to the most proximate points:

(raw) kappa = discontinuity x local proximity
ratio weighting factor
3
K = (ijk) X Wy
AV J

Discontinuity ratio

In MDS applications we wish to ensure that small changes in the solution distances
(d;) are associated with small changes in the data (). Working with squared
distances, as in DISCONT. the ratio becomes*:

yz 51k/

Weighting factor

In the case of kappa. the weight factor is made the reciprocal of the corresponding
squared solution distance:

= U3,

This form of weight has two useful properties: it ensures that local monotonicity is
preserved (decreasing the contribution of any pair by the square of its distance, so
proximate pairs contribute a good deal. and far distant ones scarcely at all), and
the weights remain invariant under changes of scale.

Put together. these form the raw kappa index:

Raw x — zz( ,k><d k)

Raw x = zz( )

JFk

or. in simplified form:

*See Shepard and Carroll 1966, p. 581 et seq. In their treatment, data are referred to as (d}) and
solution distances as (D%).
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As in the case of raw stress. this index has the unfortunate property that an
arbitrary enlargement of the solution configuration can make departure from
continuity (raw kappa) as small as desired. And once again. the remedy 1s a
normalising factor that will ensure that changes in the scale of the solution do not
affect the index. Shepard and Carroll (1966, p. 583) show that the simplest effective

normalising factor is:

J*k Jk/

The normalised index of discontinuity (used in PARAMAP and non-linear PROFIT)
then becomes:

Normalised » = (Raw x)/NF

S boral

j=k

These. and related measures. are further discussed in Appendix AS.l and in the
PROFIT and ParaMAP documentation of the MDS(X) series.

By minimising kappa. continuity scaling beth preserves local structure and
allows solutions to be forced down into very small dimensionality, so long as the
user 1s prepared to disregard or downgrade large distances. The Shepard diagram
resulting from continuity scaling has a characteristic fan-like form which reflects
these properties. As the (solution) distances increase, the corresponding data
values increase, which reflects the fact that any discrepancy in the representation of
small distances is heavily penalised (i.e. local structure is being preserved). whereas
even very large discrepancies in representing the largest distances are virtually
ignored. Typical examples of the diagram occur in Shepard and Carroll (1966. p.
575) and in Coxon and Jones (1978b, p. 266), reproduced as Figure 5.3.

Continuity scaling is a hybrid transformation. In that it assumes that the data
are a direct estimate of the solution distances (except for a possible scaling factor).
so it implicitly assumes that the data are at the ratio level of measurement. and is
therefore an instance of classic metric scaling (see section 5.2.3.2). But it also
preserves local monotonicity, and to that extent continuity scaling can be viewed as
an even weaker form of monotonicity than that assumed by non-metric scaling.
However. the continuity criterion ensures that the characteristic ‘steppiness’ and
‘angularity’ of the monotone function are smoothed out.

5.2.3 Regular transformations

By ‘regular’ transformations we mean those which are expressible in a simple
mathematical form and are systematically increasing or decreasing. In effect, the
term covers ratio and linear—often confusingly called ‘metric'—and power
rescaling functions. Regular rescaling transformations have the advantage over
irregular monotonic transformations of being smooth and simple in form. Hence if
the researcher’s main interest focusses upon the relationship between the data and
the underlying model, rather than on the solution itself (as. for example, in
studying the relation between physical and perceived properties of colour or
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between subjective and geographical distance), it is usually much simpler to
interpret the results and predict values outside the current range of data if the
transformation is a regular and simple mathematical function. In any event, a
monotonic scaling often suggests a simpler, underlying relationship: Shepard
functions are often linear or exponential over most of the range of the data. In such
cases. having used the more indulgent monotonic assumption, it makes eminent
sense to go on to use a more restrictive but simpler transformation and submit the
data to metric scaling by a regular transformatton.

5.2.3.1 Ratio transformation

The earliest forms of ‘metric’ multidimensional scaling, dating from the pioneering
work of Richardson (1938), assumed simply that data dissimilarities were direct
estimates of distances between the points concerned, so that the solution distances
are viewed as a ratio transform of the distances of the solution, of the form

djk = béjk’

where b is the ‘proportionality coefficient’ or ‘scaling ratio’, merely allowing for a
difference in the actual size of the solution configuration. which is generally
considered irrelevant in the MDS context. Given such a set of data, it 1s a relatively
straightforward matter to estimate the dimensionality of the solution space and the
co-ordinates of the objects by a method developed by Young and Householder
(1941). known subsequently as Eckart-Young factoring (see Appendix A5.2).
3.2.3.2  Linear transtormation

Linear transformations preserve information on the equality of intervals or
differences. so that if the differences (a — b) and (¢ — d) are equal in the original
data. they will also be equal when transformed linearly.
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In many cases, methods of data collection or preliminary scaling vield quantities
which clearly are not ratio-level genuine distances, but rather interval-level
quantities sometimes referred to as distances. How are such interval-level data to
be converted into ratio distances? The use of such distances as data assumes that,
at least in the perfect case, the solution distances are a linear transformation of the

data,. that 1s,

djk = + béjk'

In the usual case, this equation will only hold strictly for the fitted pseudo-
distances, that is. dj, = a + bd;. We have seen that the proportionality coefficient.
b (the scale of the configuration) is arbitrary and merely chosen for convenience.
However, estimation of the constant a (the intercept on the Shepard diagram linear
regression function)* poses a more serious difficulty referred to as ‘the additive
constant problem’.

The additive constant problem
The problem can best be illustrated by an example based upon one originally given
by Torgerson (1958, p. 403). Consider the matrix of data dissimilarities given in
Table 5.2a. It happens that, as they stand, these-dissimilarities cannot be
represented in Euclidean space. The data do~not even all satisfy the triangle
inequality axiom of any distance measure (Appendix A2.1). For instance. the
axiom requires that d,, < d,s + ds,. whereas in these data d,,(= 6) is manifestly
greater than d,s + ds.(= 4).

If. however, each dissimilarity in Table 5.2a has a constant value of 2 added to
it—that is, if the data are linearly transformed by the equation

ot =20 + (1.0)(2"’d

then the resulting data matrix is as given in Table 5.2b. It happens that there is a
perfect two-dimensional representation of these data given in Figure 54. If.
however, a constant greater than 2 is added. the data can still be perfectly
represented, but only in a space of more than two dimensions.

The linear rescaling problem can be stated as follows: Given a data matrix which
may not even be capable of representation in a Euclidean space. can a constant be
found (i.e. how can the data be linearly transformed) so that the data can be
represented as Euclidean distances (in as few dimensions as possible)?

There is no complete solution to the problem, though several have been
proposed, some of considerable complexity (see Messick and Abelson 1956:
Cooper 1971). An approach which has proved to be generally adequate is Carroll
and Wish’s (1973) ‘triple equality’ procedure (based upon Torgerson (1938. p. 276}))
which converts data dissimilarities into distances by application of the "triple
equality difference’ (TED) test to estimate the additive constant:

a= I,n,ai( (0 — 05 — 0Oj)
The ‘triple equality difference’ procedure is based upon a very simple idea. Let us

*In fact, MRscAL estimates a slightly different transformation: d;, = b(é; + a), which resuits in a
Shepard diagram where the function goes through the origin.
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(a) Data dissimilarities (relative or comparative distances )

|
Object 1: tr 2 3 4 5
| |— 3 4 3 1
2 i 3 — 3 6 2
3014 3 — 3 1 |=4,
4 3 36 3 — 2
3 : 1 2 1 2 —
(b) Transtormed data ( actual distances )
1 2 3 4 5
1|— 5 6 5 3
205 — 5 8 4
3 6 5 - 5 3 ()jk — Oﬂ( + s
415 8 5 — 4
i3 4 3 4 —
(c) Triple equality test on data ot (a) S
Triple (Max) Test
1t 23 1.3 2 4 -3 -3 -2
124 2.4 1 6 —3 -3 0
125 1.2 35 3 -1 =2 0
134 1.3 4 4 -3 -3 -2
135 1.3 3§ 4 -1 -1 + 2 (max)
145 45 1 2 -3 -1 -2
234 2.4 3 6 —3 =3 0
233 2.5 3 L2 =3 =1 -2
245 2.4 5. -6 -2 =2 +2 (max)
345 4.5 3 2 -3 -1 -2

Additive constant = max (J; — J;; — dyz) = 2

Table 5.2 Additive constant example

suppose that the three points (i. j, k) form a straight line in the solution space, such
as the line (1, 5. 3) in Figure 5.4a. Then (d;; + d;,) will necessarily be equal to d,
and hence the TED value. which may equivalently be written as d;, — (d;; + dy),
will be zero. If j lies off the line then (d;; + d;) will be larger than d;, and hence the
value of TED will be negative. In short, the TED test applied to a set of actual
distances will produce a value of 0 for points lying on a line, and a negative value in
other cases. Note that in this case the test could here never have a positive value
and its maximum value would be zero. The situation is the same when dealing with
data or ‘relative distances’ (where 8,,, = d,,, + a) except that the TED test will give
rise to the value (0 + a) in the case of collinear points and to a smaller value
(negative + a) in other cases. Hence the maximum value of TED will give the
quantity which has to be added to each dissimilarity value to convert it to a
genuine distance. i.e. the ‘additive constant’. This number may incidentally be



rov e yser § vuiae Lo viiuaimensionail scalng

8

T 34t 5 5§ ¢ 1o
Figure 5.4 2-dimensional representations of data in Table 5.2b

negative. As an example. consider the data in Table 5.2. In Table 5.2¢ an additive
constant of 2 is necessary to turn the data into real distances. This value is correctiv
given by the triples of points (1, 3, 5)and (2. 4. 5). and in hoth cases the three points
lie as a straight line, as can be seen in Figure 5.44. Even for fallible data. and so
long as there are enough points to ensure that at least some triples come close to
forming a straight line, this simple method provides an adequate and
straightforward way of estimating the additive constant. and is the method used in
the INDSCAL program.

5.2.3.3 Power (and log-interval ) transformations

Power transformations have the general form: x’ = kx? and preserve information
not only on the equality of intervals—as in the interval scale—but also on the
equality of relative intervals, i.e. on the ratio of data values. For instance. taking
four ratio level data, a = 3,b = 6, ¢ = 10 and d = 20. then the ratios a'b and ¢ d
both equal 5. When the values are transformed by the power function x' = 3x-. the
ratios a/b and c/d are still equal. but now equal £. In the equation the value of k is
an arbitrary factor which cancels out in the formation of ratios: it is the exponent.
B. which carries the significant information. Power functions are probably most
famihiar in the form of compound interest rates in economics and in the
‘psychophysical law’ in psychology.

A power relationship can always be re-expressed in logarithmic form.* In
logarithmic form, power transformations preserve the log differences (or intervals)
corresponding to the original ratios so that. in the above example. loga — log b =
log ¢ — log d whether with the original values or under the transform x' = 3x-. as
can easily be checked. For this reason, the power transformation is sometimes
called the logarithmic interval scale, the term adopted in this context by Stevens
(1959, pp. 29-30) and Roskam (1972, pp. 495-506). The power transformation is
implemented in logarithmic-interval form in the MRSCAL program.

*10%2 = 100, and log,, 100 = 2, and, in general, if a® = ¢ then log, ¢ = b.
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The power transformation is a smooth, regular, but non-linear function,
illustrated in Figure 5.1(1), whose main parameter of interest is the exponent value
which determines how rapidly the slope accelerates. If the power function is drawn
in log co-ordinates it then appears as a straight line. with slope equal to the value of
the exponent. f. Put in log-interval form, the power transformationt in the case of
perfect data would be

dy = a + bllog (3,)).

where a represents an additive constant (which may have psvchological meaning as
the threshold value—see above—but is not usually given substantive inter-
pretation) and b represents the exponent value.

The power transformation has received considerable attention in scaling because
of its centrality in early psychological studies of the relationship between physical
variables and their subjective counterparts, and also because some data and
judgmental processes are known to be best represented by such a transformation.

The ‘power law’ and its scaling consequences
The work of Fechner and Weber from the 1850s on suggested that human subjects
noticed a change in the intensity of a physical variable (such as sound pressure)
when the change represented a fixed proportion of the previous intensity, i.e. that a
relative increase in a physical property was percetved as a unit fixed increase in
psvchological intensity. Put slightly differently, the subjective intensity increases as
a power function of the physical intensity. Later research has shown that for a wide
variety of physical properties. the relationship is well approximated by the so-
called psvchophysical law (Stevens 1974, p. 361)

Yy = kP,
where y is the perceived magnitude or intensity, ¢ is the physical magnitude, g is
the power exponent and k is an arbitrary scaling factor. (In some cases the
psychological magnitude only begins to be experienced at a particular threshold
and in this case the form of the law’ needs slight alteration by including an additive
constant to represent the threshold effect. Substantive interest focuses the typical
value of the power exponent (f) for various modalities.f

Later experimentation has suggested that a very similar power relationship
also exists for the intensity of opinions and attitudes and for the relationship
between direct estimation (rating) of attitudinal areas and their indirect
measurement. derived by such methods as Thurstone’s law of comparative
judgment (Stevens 1966 provides a wide range of examples).

If the 'power law’ holds for ‘softer’, non-experimental and more complex
phenomena. as Stevens and others argue it does. then some important
consequences follow for scaling studies.

First, ‘objective’ external properties may well be non-linearly related to scaling
solutions based upon subjective or perceptual data. At the very least, it would be

*As in the linear case. the MRscaL program actually estimates: d;, = btlog (J;) + a).

i Each modality tends to have characteristic exponent values, ranging from } for brightness, % for
loudness to 3% for the subjective intensity of electrical current. See Stevens (1974 pp. 362 et seq.).
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prudent to allow for this eventuality when engaged upon property-fitting using
PROFIT, allowing a ‘continuity’-based relationship which will tend to keep
increments, and hence ratios, fairly constant, or allowing a monotonic—and hence
a power—relationship between the property values and the configuration
distances using PREFMAP. In either case it would be foolish only to choose the linear
option, which would badly distort a genuine power relationship.

Secondly, the assumption of linearity between the data and the solution is likely
to be highly suspect if the data collection method was “direct’ rather than ‘derived’
(see 2.2 and 2.3). Thus, if the linear transformation is used, it ought to be
supplemented by a monotonic fit and/or a "power’ fit. and the Shepard diagrams
should be compared.

Thirdly, another way of expressing the power law is that error or variability
increases with the magnitude of the data. It is an important consideration in studies
of consensus in human judgments (Stevens 1966) and in the development of more
recent MDS models, e.g. Ramsay’s ‘multiscale models’, which make explicit
assumptions about the likely characteristics of error in the subject’s data (see
Ramsay 1977, pp. 243-6, especially the discussion beginning with the second
paragraph of p. 245, and our section 8.2.1). Perhaps more to the point, if error
increases with magnitude it is sensible to pay little attention to dissimilar points in
obtaining an MDS solution. This provides a further reason for choosing the local
monotonicity or continuity options.

Finally, for some types of data—and especxallv for confusion data. where the
similarity between two objects is taken to be a function of the frequency with which
they are confused—there are good theoretical and empirical reasons for expecting
an exponential decay (negative power) relationship between the data and the
solution distances. Indeed, this same characteristic J-shaped curve has been noted
for a goodly number of non-metric scaling studies of co-occurrence frequency data.
including Figure 3.14b, and it has been shown that the adoption of a power
transformation for the MDS analysis in these circumstances often restores
significant local structure which is lost in an ordinal scaling (Arabie and Soli 1977).

5.3 Models
The basic MDS model represents data values as distances. These distances may be
thought of as being produced by the combination of latent parameters. 1.e. the co-
ordinates of the space, which might reasonably be interpreted as scale values along
each dimension. It is the particular form of the composition of these co-ordinates to
form distances which makes their interpretation as scale values problematical. for
we are asserting in the distance model that the scale values for the stimuli are
compounded into distances by taking the difference on each scale, squaring it. then
summing over each dimension and finally deflating its value by taking the square
root. It is possible, however, to regard the data as being linked to a set of scale
values or co-ordinates by composition rules other than those of the Euclidean
distance formula—and indeed. by variants of the distance formula.

Three major types of composition rule are usefully distinguished:

(i) Simple composition. Each category of each way of a two-way (or higher)
table of data has a scale value, and the composition rule specifies that the entry is
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the simple sum of the component categories (the additive model). Other commonly
occurring examples are the difference (a subtractive) and the multiplicative
(product) compositions.

(ii) Scalar product (or factor) composition. The objects are located as points
and or as vectors in a space, and it is the angular separation (scalar product) of the
vectors which corresponds to the data dissimilarities.

(iii) Distance composition. The objects are located as points in a space and the
distance between the points represents the data dissimilarities.

Let us take each tyvpe of model in turn.

5.3.1 Simple composition

Quite frequently in empirical research the value of a dependent variable is
considered to have been produced by the conjoint effect of two or more
independent variables or factors. and the researcher is interested in estimating what
the numerical effects are (the scale values) and how they combine. Examples
abound: factorially-designed experiments in agriculture investigate how. and to
what extent. different combinations of soil and fertiliser affect crop yield; social
psychologists interested in impression-formation construct combinations of traits
and ask subjects to rate the attractiveness of the resulting combinations;
economists construct portfolios of investments or commodity bundles and ask
respondents to give their preference orderings; demographers calculate the mean
fertility of couples from different regions and occupational groups. In each case the
basic notion is the same: the data are assumed to represent the simuiltaneous,
conjoint effect of the defining factors. and the purpose of the analysis is to assign a
scale value (estimate a numerical weight) to each constituent category of each
independent variable. which, when combined according to the composition rule of
the model. will best fit the values of the dependent variable.

Most researchers will have encountered this type of analysis in the context of
two (and higher) way analysis of variance and the log-linear analysis of
contingency tables. In both cases. the underlying model is an additive one: the
values in the table of the dependent variable are assumed to be the sum of the effects
of the relevant categories which define the entry. Given the following 2-way table of
data. the scale values 4 = (8. 2, 5. 4) and B = (3, 1, 6) combine additively to
produce the entries in the table. i.e. x;; = a; + b;. In most actual applications, an
additive model will not fit the data perfectly and further interaction terms may need

B
b, b, b,
a, 1 9 14
ay 5 3 8
A
a, 7 5 10
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to be included to represent the unique, joint effect of the categories. However. it
might be that a transformation—a rescaling—of the data will fit an additive
model.

In a classic paper, Box and Cox (1964) discuss a number of polynomial
transformations of the data, designed to render effects as additive as possible. and
in his famous paper Kruskal (1965) developed a procedure based upon monotone
regression designed to find an ordinal rescaling of such data which makes them
maximally conform to an additive model. The affinity with the basic non-metric
MDS model will be obvious. and Kruskal's procedure forms the basis of the
additive sub-model of the UNICON program discussed later in the book.

So far we have implicitly assumed that the data form a 2-way table. for purposes
of simplicity. Most MDS implementations of simple composition scaling allow up
to five such ways, or factors (which may or may not be ‘modes’. i.e. not distinct sets
of objects), although there are few empirical instances of anything more than 3-way
table analysis.

Three basic operations form the basis of simple composition models:

(1)  additive model: X;; = a; + b;
(if)  difference (subtractive ) model: x;; = a; — b,

(1)  multiplicative ( product ) model: x;; = a; x b; -

The additive model is undoubtedly the best-studied and most used. It turns out to
be possible to formulate the necessary and sufficient qualitative conditions that a
table must satisfy if it is to be capable of an additive representation. This
constitutes a major triumph of axiomatic representationist measurement theory
(Krantz et al. 1971, p. 423 et seq.).

The subtractive model (or difference model) is appropriate where. for instance.
subjects have been instructed to judge the difference between pairs of objects (for
example ‘imagine 2 different people, each described by one of the adjectives of each
pair, and then judge the difference in likeableness between the 2 persons'. or where
effects are expected systematically to counteract each other).

The product model is appropriate where it is thought that categories have a
multiplier effect upon each other (or, equivalently, when the logarithm of the
effects are additive).

The UNICON program allows the user to define a number of more complex models
involving the three simple operations. such as:

xljk=aleJ+Ck+dl

(See program documentation for details.)
5.3.2 Scalar product models
In the MDS(X) series, all the scalar products (or vector or factor) models assume

that the data consist of (or can be reduced to)* a rectangular rwo-mode matrix
consisting of a set of (preference ) ratings or rankings of a set of p stimuli made by a

*In the MDPREF vector model, input may be a set of pair comparison dominance matrices.
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set of N subjects. (In MDPREF this matrix is termed the ‘first score matrix’.) For
convenience the entries in this matrix are usually denoted s;; to mean the similarity
between subject i and object j, or more usuaily the preference score given by subject
I to object j.

The vector solution consists of a configuration of p stimulus points in a user-
chosen number of dimensions. and each of the N subjects’ set of preference ranks or
ratings is represented as a vector. located so that the projections of the stimuli on
the vector are in maximum agreement (correlate as highly as possible) with that
subject’s preferences. The external form of this analysis. i.e. where the stimulus
configuration is obtained separately and remains fixed whilst the subject vectors
are estimated, was discussed in section 4.4.1.

The purpose of these models is to represent both the stimuli and the subjects in a
common ‘joint space’. Each subject’s preferences are represented as a vector—a
projection down, or collapsing of. the stimulus space onto a single dimension—just
like the properties embedded in a stimulus space. Interest will chiefly focus
therefore on two things:

(i) how well the subject’s preferences can be accommodated by the model, and
hence represented in the stimulus space (this can be assessed by the correlation of
the projections with the original data) and

(ii) how the vectors relate to each other, since the main purpose may be to
investigate individual differences in a set of rankings/ratings.

Differences between rankings are signalled in the vector model principally by
angular separation. On the one hand, as we saw earlier, the direction in which a
vector points is highly significant. for it indicates the manner in which the subject
mixes or trades off the characteristics of the stimuli in producing her preferences.
and this is measured by the cosine of the angle which the vector makes with the
dimensions of the space, By the same token, if we are interested in how one subject
vector relates to another. we inspect the angular separation between them—the
linear correlation. or cosine of the angle between the two vectors. In inspecting a
vector model solution. the first point of interest is how the subject vectors are
dispersed around the unit-circle (or sphere).*

If the vector ends are located in a small sector, this indicates high consensus or
agreement in subjects’ preferences. whereas the more unevenly they are distributed
round the circle. the greater the dissensus. The researcher will presumably become
interested in whether distinguishably different ‘points of view’ exist, suggested by
small sectors with a high density of vector ends and empty sectors between sectors.
If there are different categories of subjects we may also want to know whether the
average direction differs significantly between the categories, and statistical tests
and procedures for analysing directional data have been developed and are
available. (They are discussed in Mardia 1972, and in the MDS context in Coxon
and Jones 1979. pp. 128-36 as well as in the MDS(X) documentation for the
MDPREF program.)

*By convention. subject vectors are normalised to have the same (unit) length in MppREF. Though this is
not a necessary restriction of the model. it makes for greater simplicity if vectors are of standard ength.
In two dimensions. vector ends will therefore lie around a unit circle. in three (and higher) dimensions,
they lie around a (hyper) sphere.
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Figure 5.5 Twenty rankings compatible with 2-D stimulus configurations of 5 points
(vector models)

Although a total of p! (i.e. p(p — 1)(p — 2)... x 1) rankings of p objects is
possible, only a limited number of these can be accommodated within a stimulus
configuration. We therefore need to enquire both how many rankings can be
accommodated in a configuration of p points in r dimensions and how they are
represented therein. As an example, take the 5-point stimulus configuration given
in Figure 5.5. There are 5! = 120 possible rank orderings of 5 stimuli. but only 20
of these can be represented perfectly in a given vector configuration of 5 points in
two dimensions, and one half of these will simply be mirror-images of each other
formed by reversing the direction of the vector. The 20 rankings compatible with
this configuration are given in the figure. Notice that there is an orderly
interlocking between the rankings, akin to that shown by Coombs (1964, p. 87 et
seq.) in the context of discussing the unidimensional unfolding (distance ) model for
preferences. As one moves around the circle. only adjacent stimuli are interchanged
in the rankings (beginning in the north-easterly position and moving clockwise:
DCBEA, DCEBA, DECBA, DEBCA. and so forth).

Although the scalar products model has been described as a point (stimulus) and
vector (subject) representation, formally the model is expressed entirely in terms of
vectors—a set of vectors drawn from the origin of the space to the location of each
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Figure 5.6 Projections and scalar products

stimulus, and a set of unit-length subject vectors. The key to understanding the
formula for the model is knowing that the scalar product of the stimulus vector
with the (unit-length) subject vector is the same as the vertical projection of that
stimulus point on the subject vector. This property is illustrated in Figure 5.6,
where the subject vector is drawn along the first dimension to simplify the
arithmetic.

Let x; represent the vector from the origin to the location of stimulus j in r-
dimensional space. and y, represent the (unit-length) vector for subject i, then the
preference value which stimulus j has for subject i is estimated as the scalar product
of the vector concerned:

or in matrix form:
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The matrix of preference scores estimated by the model is termed the ‘second-
score matrix’, and the purpose of the vector model is to obtain a stimulus
configuration X and subject vectors Y. so that the discrepancy between the original
first-score” data (s;;) and the estimated ‘second-score’ values (s;;) is as small as
possible. (In the case of a non-metric version. the monotonically transformed data
will be compared to the estimated values.) Carroll (1972, p. 124 et seq.) and the
MDS(X) documentation describe the stress-like index of agreement. C, used to
measure the goodness of fit. The method of solution involves factoring two product
matrices formed from the first score matrix.*

The main properties of the vector model (cf. Roskam 1968. p. 28) may be
summarised as follows:

(1) Increasing utility. A subject’s preference (or similarity rating) increases
continuously in the direction of the vector: the further out an object projects on it.
the more it 1s preferred.

(1) Mediocrity. An object may alwayvs occupy a position between the
extremes of all the subject’s preferences. i.e. never be either most or least preferred
(see object B in Figure 5.5, for example).

(i) Reversability. If a given ordering occurs. the opposite ordering may also
occur. Indeed, the orderings compatible with a given stimulus configuration divide
into two opposite halves, producing the characteristic “spokes of a wheel’ isotonic
regions (sector of the space where the same rank ordering of stimuli is implied) seen
in Figure 5.5.

The vector model differs considerably in these respects from the distance
(unfolding) model of preference discussed in the next section. The differences and
the related issues of interpretation of configurations produced by programs
implementing the models are discussed in Chapter 6.

5.3.3 Distance models

The central idea of distance models is that the proximity of points in a space is used
to represent their empirical similarity. or equivalently that distance represents their
dissimilarity. In the vast majority of MDS models. the distance function involved is
the familiar Euclidean form, but Euclidean distance is only one special case of a
whole family of distance functions. each with its own characteristics and properties
(see Appendix A2.1.1.2). Proceeding from the familiar to the less familiar. we shall
discuss the basic distance model first, then move on to look in greater detail at the
properties of Euclidean and other types of distance.

Given a set of distances it is always possible to reconstruct the configuration of
points which generated them. (This procedure is described in Appendix A5.2.2 and
forms the basis of classic metric scaling discussed above.) However. such a
recovered configuration is not unique. in that several aspects of it are arbitrarv and

*The first score matrix S is approximated in the user-chosen dimensionality a. by a least squares
approximation S = YX' (of rank a) using the Eckart-Young factorising procedure. The eigenvectors of
the minor product matrix S'S provide estimates of the stimulus configuration Y. and the eigenvectors of
the major product matrix SS’ provide the estimates of the subject vectors X. when the rows are
normalised to unity. The eigenvalues of both product matrices are the same and indicate the
concentration of variation in the principal axes (see Appendix'A5.2.2).
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may be changed at will. (These have been mentioned before (4.1), and are further
discussed in Appendix A7.1.) In particular, the actual size or scale of the
configuration and the origin of the space are arbitrary. Moreover, the orientation
of the axes may be changed and reflected at will. Strictly speaking, it is only the
relative distance between points which is significant in interpreting a distance
model solution—the origin and axes simply provide a convenient framework to
locate the points.

3.3.3.1 Point-point (two-mode untolding’) distance models
When the data consist of a rectangular two-mode matrix, of rankings or ratings,
then the distance model can be used to represent both the stimuli and the subjects
as points. The solution consists of a configuration of p stimulus points and N
subject points where each subject is represented as being at a ‘maximal’ or ‘ideal’
point. located in such a way that the distances from this point to the stimulus
points are in maximum agreement with the subject’s preference ratings or rankings.

In external models such as pREFMAP phase III, the stimulus configuration is
obtained separately and remains fixed whilst the ‘subject’ or property points are
estimated (see 4.4.2), whereas in internal models. such as MINI-RSA, both sets are
estimated simultaneously. As in the case of the vector model. both metric and non-
metric versions exist—in the former a linear correlation between-the preference
data and the subject-stimulus distances is maximised while in the latter a variant of
stress involving only the rank order of the data is minimised.

The position of the "ideal point’ is interpreted as the one point in the space where
the subject’s preferences are at a maximum. and her preference decreases in every
direction. This is often termed a ‘single peaked preference function’, since it
assumes that there is only one point of maximum preference.

The non-metric version of the distance model -is best known under the title of
‘unfolding analysis’. devetoped by Coombs (1964. chs. 5-7). The two-dimensional
case 1s illustrated in Figure 5.7 with reference to the same S-stimulus configuration
used in the vector model case (Figure 3.5).

A midline is drawn between each pair of points. dividing the space up into 46
isotonic regions. Every ideal point within one of these regions possesses the same
rank order of distances to the five stimuli. This is illustrated in Figure 5.7; thus in
region [ the corresponding I-scale is ABECD. and in crossing over the midline CE
to region II. the I-scale becomes ABCED. Similarly the move from region 111 to IV
represents the transition from DBCEA to DBECA. Notice that some regions are
entirelv encompassed by midlines (closed isotonic regions), whilst others at the
periphery are not (open isotonic regions). Herein is an important distinction
between the vector and distance models: the vector model excludes closed regions
(see the corresponding Figure 5.5) and can accommodate fewer I-scales than the
distance model. The maximum number of I-scales compatible with the two models
is illustrated below in Table 5.3 (see Coombs 1964, Tables 7.1 and 12.9).

Normally the points corresponding to the most popular or consensual rankings
will lie at the centre of the space. and the least popular ones at the periphery.
Research has shown. as Coombs originally suggested. that ideal points within the
‘open’ isotonic regions are located with less accuracy than those in the closed ones.
Moreover. the fewer the midlines constraining a region. the more likely it is that the
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Figure 5.7 Forty-six rankings compatible with 2-D stimulus configuration of 5 points
(vector model) ~.

subject point be mislocated in a scaling solution. This is well illustrated in Figure
5.8. representing the scaling of the 18 I-scales compatible with a 2-dimensional, 4-
point configuration (Coombs. 1964. Figure 7.4. p. 146). Each small square
represents the position of a subject as located by the relevant non-metric program
(MINIRsA). Note that in the case of the closed regions. the squares are all located
within the correct region. although they are deflected to the outer edge. In the case
of the open regions. those defined by three lines are correctly located near the
centre of the region but those defined by only two lines are. without exception.
displaced slightly outside their correct location.

The muitidimensional unfolding model is hence clearly more ‘tolerant’ than the
vector model. in the sense that it can accommodate more I-scales {(see Table 5.3).
So long as the number of stimulus points is large compared to the number of
dimensions. the size of the isotonic regions is small. especially towards the centre of
the configuration. and they become increasingly well-represented by a point. For
this reason. stimuli points in the central part of a configuration are normally the
most stable, whilst those at the periphery can usually be moved around fairly frecly
without affecting the goodness of fit. The variation in judgments about particular
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Figure 5.8 Actual and scaled location of isotonic regions

stimuli is also an important factor in assessing the stabilitv of a configuration in an
internal scaling model. Highly popular stimuli will tend to be projected into the
centre of the subject points (so that thev can feature close to most subject’s ideal
points) and highly unpopular stimuli will be located at the outside of a
configuration. Indeed. if a stimulus is sufficiently unpopular it can be located
virtually anywhere on the periphery. so long as it is at a maximum distance from
the ideal points. An example of this occurs in the analysis of the Delbeke data
reported in section 6.2.2 (see Coxon 1974) where virtually all subjects rejected the
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stimulus ‘no children’ in a study of preferences for families of different sizes and sex
composition. When scaled, this stimulus was located at greatly varying points, but
always at an extreme distance from the centre.

In summary, the properties of the point-point (distance) model of preference
which contrast with the vector model are as follows:

(1) Single peakedness. It is assumed that each subject has one single point of
maximum preference and that preference decreases (symmetrically) from this
point.

(11) Excellence. If the distance model holds. then each stimulus must be
preferred most by at least one subject.

(ii1) There 1s nothing corresponding to the reversability property of the vector
model in the multidimensional unfolding model: some mirror-image pairs of I-
scales will exist. but not others. More importantly, the distance model is
characterised by the presence of closed isotonic regions, which cannot occur in the
vector model.

3.3.3.2 Euclidean and non-Euclidean distance

So far. "distance’ and ‘Euclidean distance’ have been used interchangeably. In fact,
a whole family of distance measures can be defined for a given configuration of
points. Our interest shifts away from the correct locatlon of points to how we
measure the distance between them.

Three types of distance have been found useful in MDS and are represented in
various MDS(X) programs: city block. Euclidean and dominance metrics. These
are all special instances of the Minkowski r-metric family of distance measures
which have the form:

General (Minkowski) Distance

L

~ !
/

d(r) _ \/Z 'xja — vl

a

where x, is the co-ordinate of the k th point and y,, is the co-ordinate of the j th point
on the a th dimension and r is the Minkowski r-metric power.

Each value of r (between | and infinity) defines a distinct metric distance. Each
can be thought of as a simple composition model—a ‘powered additive difference’
model which asserts (Beals et al. 1968 pp. 133-5) that:

(1)  absolute differences on each dimension, a

(11)  which are raised to the same power r

(1) combine additively over the dimensions to produce
(iv) the overall distance between a pair of points, j and k.

In the case of Euclidean distance. the power is 2, so differences are squared. and the
final distance measure deflates the value by taking the square root.*

*Carroil and Wish 1974. p. 412 et seq. argue persuasively that the final r-th root may often be usefully
ignored. and when this is done a wider range of models qualify as metrics. In the Euclidean case, a
number of modeis are more simply expressed and best understood by treating squared distances i.e.
ignoring the final square root). Carroll and Wish (ibid. p. 413) and Shepard (1974, p. 405 et seq.) discuss
even more general distance measures, some of which do not even satisfy the triangle inequality.
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Euclidean Distance

djk = /Z ('\‘ju - ’Yka):

where x, is the co-ordinate of the j th point and x,, is the co-ordinate of the j th
point on the a th dimension.

The three commonly-used types of distance mentioned above are illustrated in
Figure 5.9. The basic difference lies in the question of whether the differences
between objects on each dimension remain separate or merge together (‘interact’)
in producing the overall distance. For r = 1 (city block metric) all the dimensional

I
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1 | ! . | ‘
0 1 2 3 4 5

General Minkowski r—metric City biock metric (r =1) (dashed lines)

dxy(//=m dxy(’lz Ef;xa—ya} =4+3=7
Euclidean metric (r ‘= 2} (solid line)

dxy/2/=2/§‘xa— Yafz = /42 +32=5

Dominance metric (approximated by r = 32)
132)=323 T x — =32 32 32
/ST TR = FeTse = 22 /TS

32/1.8447,,19+1.8530,515

32/78449,,19

4.0000125

Figure 5.9 Minkowski metrics
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differences have the same weight in determining the distance: they are simply
added together. As r goes to infinity (dominance metric) the largest single
difference comes to swamp out all other information. By contrast. the Euclidean
distance can be thought of as a compromise where no dimension has a specially
important status.

The Euclidean metric is the only one where the orientation of the axes is
arbitrary, in the sense that a rotation will leave the distances unchanged. In all
other Minkowski metrics the distances are defined by reference to a fixed set of axes
and any rotation will change the distance values. It is for this reason that axes should
be drawn in any configuration where the distance is non-Euclidean.

This property is illustrated by the Minkowski unit-distance (iso-similarity)
contour diagram in Figure 5.10. More complex variants are given in Roskam
(1968. p. 51) and in Carroll and Wish (1974, p. 417). If all the points at a fixed
distance from the origin of a 2-dimensional space are joined. then they form a circle
in the case of Euclidean distance (the circle defines the equation p*> + g*> = r?,
which in this case corresponds to (x; — y;)? + (x, — v,)* = d2, of Figure 5.9).
Wherever the dimensions are rotated. the squared dimensional differences still
total one. so all are equally permissible. In the case of city block distance, the
points at a fixed distance from the origin form a diamond (the diamond is defined
by the equation p + g = r. corresponding to (x, — v;) + (x; — y,) = d,, of

Dominance (r = <o)

|
Euclidean (r = 2)

\
\\\/City block (r = 1)

Origin N

Figure 5.10 Equal distance contours for 3 Minkowski metrics
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Figure 5.9). If the axes are rotated through anything other than 90° (or multiples of
it) the sum of the differences will no longer be the same. For the dominance metric.
the unit contour is a cube: until the two differences become equal. only the larger
makes any contribution to the distance. Once again. a rotation of anything but
multiples of 90° will destroy this relationship.

There is persuasive psychological and empirical evidence (Attneave 1950.
Torgerson 1958. Hyman and Well 1968) that the city block metric is particularly
appropriate where the characteristics of the objects are obviously compelling or
perceptually distinct. By contrast, where the characteristics are more complex the
dimensional information begins to merge or blur. and the Euclidean distance will
provide a better description. (Compare judging pairs of triangles differing in size
and orientation to judging towns in terms of their desirability.) Arnold (1971) has
argued that the dominance model provides a better account of data collected by
procedures which impose heavy information processing demands on the subject.
although the analysis has been questioned by Carroll and Wish (1974).*

A good deal of evidence underlines the conclusion unequivocally argued by
Shepard (1974, p. 407) and Carroll and Wish (1974. p. 420) that the Euclidean
metric appears to be robust against even extreme departures from its assumptions.
Moreover, city block and dominance metrics turn out to be rather subject to local
minima and degenerate solutions (information ¢n 8 points can be fit perfectly.in a
totally degenerate way. in 3 dimensions, see Shepard 1974). Even if users wish to
scale in a ‘simpler’ metric they are advised to begin with a Euclidean solution and
work down (or up) to the preferred metric (Arabie 1973. Shepard 1974).

5

3.3.3.3 Generalised distance and other metrics

Three other types of distance occur in the MDS(X) programs. The first tvpe
(weighted Euclidean distance. a generalisation of Minkowski metrics) is emploved
in analysing three-way data and is dealt with in the next chapter.

The other two types of distance are simpler than the Minkowski metric and
neither are necessarilv capable of being represented in a dimensional space. The
humblest is simply a metric that obeys the triangle inequality. and the other is the
hierarchical clustering or tree-metric that obeys the somewhat more stringent ultra
metric inequality.

The simplest type. ‘non-dimensional scaling’. relaxes not only the additvity
requirement of Minkowski spaces, but also the minimum dimensionality of
dimensional smallest-space analysis. It does so bv dispensing entirely with the idea
of a co-ordinate space as embedding the distances. and seeks instead to rescale the
data dissimilarities into a set of distances which perfectly obev the triangle
inequality, and are as close as possible to being a monotone function of the data.
This is achieved by a process of successively increasing the variance of the
distances. Intuitively this can be likened to the conformal mapping discussed in
5.2.2, where the largest distances are increased and the smaller ones decreased.
This has the effect of forcing down the dimensionality of a space—as in conformal
mapping down from a sphere onto a flat plane. In this non-dimensional case. the
*Koopman and Cooper (1974) rightly stress that in two dimensions it is impossible to tell
mathematically whether the city block or dominance metric is appropriate, since the one is a

mathematical transformation of the other—indicated by the fact that the unit contours simply represent
a 45° rotation of each other.
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analogy does not hold exactly, but it produces ‘better behaved’ distances. This
process is known as maximum variance non-dimensional scaling (Cunningham
and Shepard 1974: implemented in MDS(X) as MVNDS) and described in 6.1.7.

The chief virtue of the model is its generality and simplicity: all the other models
are special, more restrictive versions of it and only minimal assumptions have to be
made to obtain a solution. By dispensing with the assumption of an underlying
continuous space, it may also be possible to find a better. more law-like
relationship between the original and the rescaled data. Moreover. for the cautious
user. this procedure could be used as the first part of the scaling process: obtain a
good estimate of the shape of the monotone function without assuming any
particular Minkowski metric. and the resulting distances can then be used as input
for a more restrictive distance model of one’s choice—thus avoiding the dangers of
degeneracy and local minima to which non-Euclidean distance scaling is prone.
Alternatively. the user might decide to represent the rescaled data in some other
way: as a graph. or a tree (1.e. as input to a clustering program).

The other type, the tree-metric. defined by the ultra-metric inequality, was
encountered earlier in section 4.3.3.1 as the defining characteristic of a hierarchical
clustering scheme (HICLUs program). If a set of data obeys this criterion it can be
represented as a dendogram (or rooted tree) where the distance between any two
points is defined as the level at which they join (see Figure 4.2).

APPENDIX AS5.1 KAPPA AND RELATED MEASURES OF
DISCONTINUITY

All Shepard-Carroll (1966) kappa-based measures of continuity have the basic

form:
[(smoothing) <local proximity> //normalising
kappa = . X, . .
ratio /) -* weight / factor
(i)~ (i1) (1if)

(1)  Smoothing
The basic notion of a ‘smooth transformation’ consists in comparing two uni-
dimensional continua, x and vy, in terms of a mapping or transformation which
ensures that the intervals or differences between adjacent points (i, j) in the.one are
of approximately the same size as those in the other, i.e. that the interval (v —y;)is
of about the same size (apart from differences in scale) as the interval (x; — X;).
This is achieved by studying the ratio of the differences for each adjacent pair,
squaring the result for purposes of convenience. Thus.
(- (22
dx Xp — X
In the case of MDS. where the data ‘distance’ (y) are being compared to the
solution distances (x), the differences in (1) become distances. and a simple overall
measure of discontinuity or ‘lack of smoothness’ between the data and the solution
is formed by summing the ratio over all p(p — 1)/2 pairwise data points:
o,—,) 5
M @)

iFj
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(i1) Local proximity weight

Local proximity weights w;; are the extension to the multidimensional case of the
restriction to adjacent pairs (representing changes in value) in the uni-dimensional
case. Shepard and Carroll (1966, p. 582) show that only weights having the form

w; =dj. with s <0

can ensure both that local monotonicity is enforced (s < 0). and that the ratio of
any two weights remains invariant under change of scale. since solutions are
unique only up to similarity transforms. As they indicate. simplicity and experience
show that s = —2 is a sensible choice. vielding weights of the form: (1 7). which
when rnultlphed into the discontinuity ratio (1), yields the basic measure of
discontinuity.

raw kappa = ZZ (j—‘j)— (3)
1=] ¥
(1)  Normalising factor
Shepard and Carroll (1966, p. 582) define a normalising factor which ensures that
kappa reaches a minimum when the solution distances d' are proportional to the
data distances 5‘ except for a similarity transform. The sunplest such factor is

Y (1/d?)2. (4)

i=j

The product of (3) and (4) yields the basic (normalised) kappa index. Gower
(1979, p. 3) shows that this normalised kappa measure can be written in a
particularly simple and interpretable form:

5% d2

v,

normalised kappa = Y w,-j<.i, - i) (5)
1=y
If the d;; and §;; are of approximately the same order of magnitude. the weighting
factor is approximately equal to (1. d)—which emphasizes fairly starkly how
drastic a weighting function it is, giving long distances virtually no influence in
determining the final configuration, and giving short (proximate) distances
enormous weight. Even small differences in short distances will have Very
considerable effect on the size of the kappa measure: many users may prefer a less

punitive weighting factor.

A5.1.1 Generalised forms of continuity index
Normalised kappa is a special case of the family of continuity indices referred to as
‘kappa star’

- 5y [ZZ () ] (6)
oy (d )
(Normalised kappa is the case wherea = 1,b = 2andc = —1.)If the normalising
factor is to keep the kappa index invariant under a similarity transform on the
solution space, then the exponents must satisfy the condition b + ¢ — a = 0, and ¢
should be negative. (The exponent values can be varied within the PARAMAP
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program. where the default values produce the normalised kappa index.)

In terms of the components of the index. a and b affect the continuity ratio, b
(and. more indirectly, a) affects the strength of the local monotonicity weight, and
b and ¢ affect the normalising factor. Kruskal and Carroll (1969) have argued for
¢« = b = 1. thus minimising the local monotonicity weighting and making all
‘changes and distances of equal importance in the minimisation process. They also
make the case for reducing the size of the exponents, suggesting two further
possibilities:

(i) a = L. b = . when the ratio takes the especially simple form of (5ij,’d,.2j),
which still preserves local monotonicity weighting, but not in a way that so severely
reduces the effect of larger distances: and

(i) « = b = i which removes the local monotonicity weighting and
concentrates the effect on the simple ratio of the two distances (9, d;;).

In general. it is necessary that b > « if local monotonicity is to be maintained:
the greater the inequality. the more severely discrepancies in representing local
structure are penalised. and the less the balancing effect of more distant points.

APPENDIX A5.2 CONVERTING DISTANCE INTO
SCALAR PRODUCTS AND BASIC
CLASSICAL SCALING

A5.2.1 Conversion of distances into scalar products

In Appendix A2.1 it is shown how to convert scalar products into Euclidean
distances. The reverse is often more useful and necessary—how to turn distances
into scalar products. This forms the initial stage of most classic metric scaling
procedures and is also often used to produce an initial configuration in non-metric
models.

(i) Converting distances into scalar products*

We assume that the distances are genuine and not relative or ‘errorful’ distances,
and to simplify matters we shall assume we are dealing with squared distances.
Then the required conversion formula is as follows:

= di = d?) (1)

J

4

bjk = ——%(d;’k - (/

where b, is the scalar product between vectors j and k.

n n

(1.21- = Ydfk,‘n. (1,(. = Sd,:k n and ([3 — szj:k n
) =

et

k

and n is the number of distances.
Formula (1) can be derived easilv from the definition of Euclidean distance so

*This section relies on Carroll (1973). Alternative derivations will be found in Torgerson (1958,
p. 255 et seq.).
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long as we are dealing with genuine distances (rather than relative or ‘errorful’
ones) and if we simplify the arithmetic by placing the origin of the space at the
centroid of the points. and deal with squared distances rather than the distances
themselves.

By definition:

which when multiplied out gives

2 .2 - - 2
djk == Z (A]a - 2Aja’\ka -+ Aka)
a

= 2 X = 2Y Xidka T X Xia (3)

This first and third terms on the right are the squared norms of j and k respectively
(the vector drawn from the origin to the points concerned). denoted /; and ;. hence:
di =0 + = 2% xx, (3a)

The cross product term on the right of (3a) corresponds to the scalar product
between vector j and k, denoted b, so the last equation can be simplified and
rewritten as

dix = I + [ = 2b, (4)
Since 2 is defined as the averaged squared distance from the origin (i.e. Y I3/n) then

: J
the following equalities can be shown to hold:

=P+ & =P+P and &2 =28

(where the dot signifies the average over the relevant subscript). Substitution in (4)
yields

d,;k = d} - d,;. + d = —2bj,
which can be re-arranged as
b = —3(d} — &% — di + d?) (5) = (1)

thus yielding the necessary conversion formula.
As an example, let us return to the distance matrix used in Figure A2.1:

byy = —3ld3; — d* — di + d.z.)
- _1(8_2_33 Z§>
2 3 9
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which 1s precisely the scalar product (calculated from the centroid as deviate
scores) b,, given in Appendix A2.1.2.

The conversion formula as can be seen in (5) involves ‘double-centring’ the
squared distance matrix, i.e. removing the row effects, the column effects and

adding back in the grand mean.

A5.2.2 The scalar products matrix B and classic scaling

The scalar product matrix. B. has a number of properties which are crucial to
recovering the space which generated the original distance. Young and
Householder (1941) showed that:

(1) If B is positive semi-definite (Gramian)—as is necessarily the case if we are
dealing with real distances—then by definition its latent roots will be non-negative.
This means that the distances can be represented in a real Euclidean space.

(i1) The rank of B is equal to the number of dimensions necessary to represent
the distances.

(1) B can be factored by conventional methods to obtain a matrix A:

B = AA’

where A is a matrix whose elements (a;;) give the projection or co-ordinates of
stimulus i on the j th dimension. (These co-ordinates are only unique up to a
similarity transform).

Moreover. Eckart and Young (1936) show that if one wishes to obtain a solution
in as small a dimensionality as possible (i.e. to approximate a full solution of r
dimensions by one in ¢ < r dimensions), then the corresponding matrix of co-
ordinates (call it C. of order q) which minimises the'sum of squares of the difference
between the full and the approximate solution is given by

C = A* 1 A¥

where /1 consists of the first ¢ latent roots of B (in order of magnitude). and A* (an
incomplete version of A) consists of the corresponding g columns or latent vectors
of A. (see Torgerson 1958. p. 255 et seq. and van de Geer 1971. p. 70 et seq.).

These theorems of Young, Householder and Eckart provide a straightforward
way to recover the space that generated a set of distances and produce a close-
fitting approximation in a lower dimensionality. The first is achieved by turning
distances into scalar products by applying formula (5) and then factoring the
resulting matrix to obtain the co-ordinates. which will be unique up to a similarity
transformation, and the second is achieved by restricting attention to the first g
latent vectors of the matrix.

But these procedures only hold if the data are genuine distances: if they are only
‘distance estimates’ or relative distances. then we shall encounter the additive
constant problem discussed in 5.2.3.2.1 above. Nonetheless, this classic scaling
solution turns out to be remarkably robust. and forms an integral part of obtaining
the initial configuration for non-metric models, of the now more sophisticated two-
way distance metric scaling models and in the basic three-way model, INDSCAL.



