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1. INTRODUCTION

As a variable, “family size and composition” has the sociologically
unusual property of being clearly related to the defining “‘objective,” numeri-
cal, characteristics of the stimuli, namely sex, and number of children. 1t is
perhaps because these characteristics are so unambiguously defined that
interest has centered in the main on issues other than simply identifying the
factors which enter the preference judgments. Two questions have been
especially salient.

1. Are subjective differences in family size the same as the objective

differences? If not, are they systematically related?

2. How do subjects combine the defining characteristics in order to

arrive at their preference scales?

The first problem, a familiar enough one in psychophysical contexts, has
been discussed in detail by Goldberg and Coombs (1963) in their analysis of

judgments of the difference made by families of varying size and composition
to a mother’s “satisfaction and problems.” As in other studies, one main

conclusion was that the subjective distance between adjacent numbers of
children systematically decreases with the increasing number of children. In
particular, the first prime interval (the subjective difference between having no
children and having one child) was found to be very much larger than
subsequent ones. If subjective scales depart systematically and markedly from
the objective (equal interval) scale, then it is presumably the subjective scale
which should feature in any theory explaining subjects’ preferences.

In a recent paper, Coombs and his colleagues (1973) present a number
of alternative models of how subjects combine information to arrive at overall
preference rankings for families of different composition and size. They go on
to test whether the subjects’ data possess a number of ordinal properties
which axiomatic measurement theory shows to be necessary conditions for
obtaining an additive numerical representation. Two models which he presents
are of particular relevance to the analysis presented here:

*reprinted from Social Science Research, 3, 1974, pp. 191-210



164 Interpretation

Model 1.
R(I and ]) = Mk(M(S,') + u(d,))

That is, the rank assigned by a given individual k to the family composition
stimulus of / sons and j daughters is a monotonic (decreasing) function of the
utility assigned to i sons added to the utility assigned to ; daughters (The
utilities are assumed to be single-peaked, having a single maximum at the
subject’s *ideal point’ over the variable concerned).

Model 2.
R(i and J) = Mi(u(xy) + u(yy))
where
Xy =it dj,
Yy = 5i - dj.

That is, the preference rank assigned by a given individual to the composition
(i and j) is a mondotonic function of the addition of two {new) variables: x;;
(which is the total number of children} and vy (which represents the
preponderance of sons over daughters).

Both of these models are straightforward and appealing. They postulate
that preference for a particular composition of stimuli is determined by the
additive effects of the attributes making up the composition; they differ only
in the nature of the attributes. The crucial assumptions are that only two
characteristics systematically enter the preference judgment and that the
utilities combine additively. If they do not combine additively, but interact in
producing their effects, this may be due either to the nature of the scales (i.e.,
a transformation of the values may render the preferences additive) or to the
inherently nonadditive nature of the process of composition. Axiomatic
measurement theory (Krantz ef al, 1971, Chap. 6) provides a series of tests
for whether (a possibly ordinally rescaled version of) the data are compatible
with an additive model, and several scaling procedures exist for estimating the
resulting utility values.

In this paper, a less stringent and more general approach is adopted,
oriented more to exploring the characteristics of the data than to the
confirmation of particular hypotheses about them. But by tolerating greater
error, and confronting the data with models of considerable generality and
variety it will be possible to investigate the tenability of certain assumptions
which Coombs’ models make.

The strategy followed here will be to analyze a set of preferences for
families of different sizes and composition within the framework of what
might be termed the *‘general distance model,” analogous to the general linear
model.

The various stimuli (family compositions) are viewed as points located in
a space of unknown dimensionality. As will be seen, previous investigators
have postulated a dimensionality as high as six; hopefully no more than the
two defining dimensions (number of sons and number of daughters)—or some
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simple function of them-will be necessary to accommodate the data. The first
part of the paper will be concerned with identifying these dimensions in terms
of two rather different conceptualisations (models) of how preferences are to
be interpreted. The second part of the paper will concentrate on the
composition problem: given a representation (or configuration) of the stimuli,
in what ways is this information combined in arriving at overall preference
rankings? The aim will be to compare the rationale of several approaches
towards explaining such preferences, and examine the cognitive and sub-
stantive implications of the solutions obtained by applying the models to the
data.

Two Spatial Models

The spatial models considered here share 2 number of assumptions.
First, it is useful when conceptualising preference to think of subjects as
having a “cognitive map” or “internal representation™ of a set of stimuli—in
this case, of families of different size and composition. For many other sorts
of cultural objects, it is hazardous to assume that subjects perceive the stimuli
the same way {(or share the same cognitive map) and models have to be
developed which can accommodate highly dissimilar cognitions.2 However,
differences in preferences for families of differing size and sex composition are
unlikely to spring primarily from cognitive differences; differences in evalu-
ation are much more likely to be the major source of variation.

Within the context of spatial models, two main ways have been
suggested for representing preference. In the “locational” {(distance or unfold-
ing) model, each Ssubject is assumed to have a unique point of preference
which is defined by the coordinates of his maximum preferénce on each
dimension of the map, and it is assumed that his preference (or “utility”
function over the map) is single-peaked”® or has only one maximum. The
subject’s rank order of preference for the stimuli is interpreted as giving
information on the rank-order of distances between the location of his “ideal
point” and the location of the stimuli. Preference for a set of objects is thus
viewed as a decreasing function of their distance from the subject’s ideal point
in the same cognitive space.® An alternative linear, or vector, model (Tucker
and Messick, 1963; Carroll, 1964) also assumes that a set of subjects share a
common cognitive map, but their preferences are now represented as a
direction or vector in that space. The subject’s order of preference is
interpreted as giving information on the rank order of the projections of the
stimuli on his vector.

These two models differ principally in what assumptions they make

2Carroll and Chang (19700 have developed a particularly powerful modei
(INDSCAL) for representing individual differences in perception by assuming that each

subject attaches differentiul (possibly zero} importance or weight to a common set of
dimensions. In this case a similar pattern of weights represents a specific point of view.

3a concept introduced by Black (1948}, and developed in this context by Coombs
(1964}, Arrow (1951), Luce and Raiffa (1957}, and Carroll (1972).

4This assumption is substantiated in some studics, where subjects’ preferences are
inferred from information on their judgments of the similaritics between stimuli (see
Klahr, 1969; and Steinheiscr, 1970).
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TABLE 1

Summary Information on Rank Scores for Different Family Size Compositions?

Stimuhi Code Range Mean Variance Skewness  Kurtosis

0 children 04 0.2 0.4 3.8 15.8
1 son 150D 0-12 3.6 7.3 1.1 0.3
2 sons 2800y 2-17 8.1 13.1 0.6 ~0.3
3 sons 380D 5-16 9.7 6.6 0.3 0.4
4 sons 480D 4-18 10.0 9.6 0.3 0

5 sons 550D 0-20 8.7 20.6 0.2 -0.4
1 daughter 0S1D 1-11 2.6 4.4 1.7 3.2
2 daughters 082D 2-13 5.6 7.7 0.9 0.1
3 daughters 083D 2-12 6.2 50 0.5 0.4
4 daughters 054D 1-13 5.8 5.9 0.3 0

5 daughters 0S5D 0-13 4.8 11.8 0.6 ~0.6
1 son, | daughter 1S1D 4-19 11.0 17.5 0.4 -1.0
2 sons, 1 daughter 281D 10-20 151 6.1 0.1 -0.3
3 sons, 1 daughter 381D 10-19 15.9 3.5 ~0.6 0.2
4 sons, 1 daughter 451D 5-20 14.8 12.6 -1.0 0.7
1 son, 2 daughters 152D 6-20 12.5 7.5 0.2 0.1
2 sons, 2 daughters 282D 13-20 17.9 2.3 -0.8 0.8
3 sons, 2 daughters 382D 12-20 18.4 4.6 -1.6 1.8
1 son, 3 daughters 183D 2-18 120 8.7 ~0.6 0.8
2 sons, 3 daughters 283D 9-20 17.1 5.6 -1.2 1.0
1 son, 4 daughters 184D 1-18 10.1 17.5 -0.3 -0.8

THighest preference is a rank of 20, and lowest preference has a rank of 0.

about how the subject combines information relating to the dimensions of the
space when arriving at his overall preference ordering. The vector model makes
the simplest assumption, implying that subjects simply collapse the space by
projecting the stimuli on to ore dimension oriented towards the most highly
preferred region of the space. The angle between a subject’s preference vector
and a dimension spanning the space can then be interpreted as measuring the
importance of the contribution which that dimension makes to his preference.
judgment. It also implies, rather less acceptably, that the subject’s preference
increases unboundedly along each dimension. In the present example, if one
dimension is the number of children, this means that if [ highly evaluate a
family size of x, then I will value a family size of x + 1 even more highly. By
contrast, the distance model implies (because of the single-peakedness of the
preference function) that 1 will have a unique point of maximum preference
on each dimension, and that my preference will decrease systematically
{though not necessarily symmetrically nor linearly) in every direction, which is
a far more reascnable assumption. On the other hand, the distance model
assumes that the subject employs a much more complex rule for combining
information—namely that absolute differences on each dimension, which are
transformed by the same power-function, combine additively to produce the
overall preference value.>

JScc Beals ef al (1968, pp. 133-5). This is simply a verbalisation of the general-
distance function.
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2. INTERNAL SCALING ANALYSIS

In an extended examination of the applicability of scaling modeis to the
analysis of preference data, Delbeke (1968), presents rank orderings of
preference for the 21 family-composition stimuli given in Table 1. The data
were obtained in the form of complete pair comparisons,® from a group of 80
psychology students at the University of Louvain, matched by sex and by
socioeconomic variables.

Table | presents summary statistics on the preference “vote-count” data.”

Perhaps the two most striking inferences to be drawn from these data
are the almost universal dislike for childless families, and the high preference
given to large family sizes, with a composition of 3 sons and 2 daughters
having highest aggregate preference. In general, the following propositions
seem to hold, and are broadly supported by other empirical research studies
(Coombs er al, 1973, Westoff et gl, 1961; 136 et seq.; Freedman et al,
1960; Ryder anrd Westoff 1965):

(i) For each given single sex family size, all-boy families are preferred
to all-girl families, Moreover, the difference in average preference
(or marginal utility) of boys increases systematically with the overall
size of family (at least up to 4 sons).
(i) For any family size, a mixed sex-composition is preferred.
(iii) A preponderance of boys is preferred in mixed-composition families.

The distributions of rank preferences, “no children” (and *1 daughter’)
are far from normal, being highly skew and peaked, with very little variance;
moreover, some distributions are markedly bimodal. Because of the very small
variance of the stimulus “no children,” this has been removed from subse-
quent scaling analyses.®

In his analysis of these data, Delbeke used both a vector model and
a distance model,? and he accepted a solution of four orthogonal dimen-
sions from both the vector model and from the distance model. After

6l am very grateful to Dr. Delbeke who kindly -provided me with a copy of the
original pair-comparison duta,

TThe basic data exist in two forms—80 dominance (0,1) matrices of pair
comparison judgments, and as 80 rankings or “preference votes” obtained by summing
across rows of each pair comparison matrix. Delbeke (pp. 123-4) reports the data as
preference rankings.

Blis inclusion in the multidimensional scaling analysis very badly aistorts otherwise
interpretable configurations. In the vector model, nearly universal rejection has the effect
of locating that stimulus point in the opposite direction to the vector of the average
subject, and in the distance model it has the effect of locating it well beyond the next
ieast preferred stimulus point. In the case of the distance model, a universally rejected
stimulus must be located at a point maximally distant from most subjects; its precise loca-
tion can be very unstable, bat it tends to be located on a circle {or hypersphere) at fixed
distance from the centroid of the subject-point locations.

%The vector model was a variant of Tucker’s scalar products model {scc above) and
the distance model was Gleason’s (1967) method for nonmetric multidimensional
unfolding analysis.
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rotation he identifies these dimensions (Ryder and Westoff, 1965, pp. 75-77,
102-103). (a) Mixed sex vs one sex camposition; (b) Number of children; (c)
Number of sons; (d) Number of daughters.10

In subsequent reviews of this work, Carroll (1970) and the present
author (Coxon, 1969) were of the opinion that the high number of dimensions
(at least compared to the defining characteristics of the stimuli) could well be
due, at least in part, to the deficiencies of the then-available models and
computer programs. More recently developed, more robust procedures yield a
more acceptable solution to these data, and lead to a better explanation of them.

Vecror Model Analysis

Carroll (1964) presents a vector model for preference data (MDPREF) in
which the location of the stimulus points and the directions of the subject
vectors are obtained simultaneously, for a given dimensionality. Given a
user-specified dimensionality (#), the preference matrix, § {of n individuals by
m stimuli) is factored into the product matrix

S = XYT
where X gives the direction cosines of the unit-length vectors from the origin
of the space for the n subjects, and Y gives the coordinates of the locations of
the m stimuli points. After defining an index of agreement between data and
a given configuration, Carroll (1964, 2) shows that it is maximised by an
Eckart-Young decomposition, producing X and Y matrices which give the best
least-squares estimate (for a given dimensionality) of the preference matrix, S.

This procedure was applied to both the preference scores and the
pair-comparison data. Solutions were sought in two and three dimensions, for
men and women subjects separately. The preference score and pair compari-
sons data produce almost identical solutions in each case.l! Inspection of the
roots of the first-score matrices strongly suggests that a two-dimensional
solution is adequate and strongly counterindicate the four- initiality six-
dimensional solution accepted by Delbeke.!?2 The two-dimensional solutions
for males and females are presented in Fig. 1.

It is fairly easy to interpret these configurations: mixed/unmixed sex

101y the vector model, these four dimensions account for 91% of total estimated
communality,

LThe average mumber of intransifive {circulas) triads in the subjects’ preference
judgments is 21.4 (median at !7) oul of a possible 385, and the standard deviation is
19.7. By contrast, the expecfed number of circular triads under the assumption of
random choice is 333, with a standard deviation of 15.8 (Kendall, 1962, p. 156}, giving
an average coefficient of consistence of .94. No subject’s triads come even within 20
stundard deviations of chance expectation. Future users of this data set should note that
the number of intransitivities given by Delbeke for subjects 5, 27, 59, and 71 are
imcorrect, and should be 1, 30, 5, 17, respectively.

12The percentage of variation accounied for in the presemt analysis is (by
dimension) 75, 14, 6, 1 (males) and 75, 11, 6, 2 (females). Carroll (1970, p. 279)
discussed in detail the reasons why Delbeke accepted such a high dimensional solution. In
part, this is duc to the mistaken decision to factor the double-centered matrix of
preferences.
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composition forms the first dimension, and overall family-size forms the
second. But both factors are systematically distorted, mirroring the spread of
the individual preference-vectors on the unit-circle. A “number of sons vs
number of daughters” factor is certainly identifiable in the residual third
dimension! 3 but the amount of variation it exptains is very small.

While there is a good deal of individual variation (represented, for
instance, by the angle between the extreme subject vectors) all subject-vectors

MIXED UNMIXED

[ 3

Fig. 1A. Family composition preferences: Male subjects. Internal analysis, vector
model (MDPREF) 2-dimensional solution. Endpoints of subjects’ vectors denoted by
arrowheads.

t MIXED ._UNMXED

Fig. 1B. Family composition preferences: Female subjects. Internaf Analysis, vec-
tor model (MDPREF); 2-dimensional solution.

13The stimuli with the highest positive coordinates on Dimension III are 5§, 4S,
35, 2§ and those with the highest negative coordinates include 184D, 183D, 5D and 4D.



170 Interpretation

are oriented positively towards mixed families, and the main source of
individual variation occurs on the size of family. Males penerally prefer larger
families, and there is a somewhat larger number of vectors directed to smaller
family size among females.

Despite what will turn out to be the inadequacies of the vector model
representation, the inferences made above on p. 4 can be recognised in this
representation in the following ways.

(i) AiLboy families are preferred to all-girl families, for given single-sex
family-sizes. Concentrating on single-sex pairs of fixed family size
(such as (1S0D, 0S1D), (280D, 082D),..., (550D, 0S5D)), the
points representing all-boy families are systematically to the left of
(more highly preferred to) all-girl families of the same size.

(i) A mixed sex-composition is preferred within a given family-size.
Within each given family-size “strip,” the points representing mixed
families are consistently to the left of (preferred to) those repre-
senting unmixed family composition.

(iii} However, the inference that within a given type of mixed-composi-
tion family, a preponderance of boys is preferred does not seem to
hold.

Distance Model Analysis

Coombs’ {1964) unfolding analysis of preference data provides a very
appropriate model for data of this sort. In this distance model, both stimuli
and individuals are represented as points in 2 (possibly multidimensional)
space.

Each subject is defined by his point of maximum preference in the
stimulus space, and his preference is interpreted as a monotonic function of
the separation between his “ideal point” and the location of the stimuli.

Although some progress was made in earlier years towards developing an
algorithm for analyzing fallible data according to the multidimensional unfold-
ing model, no satisfactory solution existed before 1966, when nonmetric
multidimensional scaling procedures were adapted to “rectangular” data-
matrices (i.e., defined by two distinct sets of entities). Since comparability is
only assumed between rows of the matrix in such a procedure,14 relatively
few constraints exist for obtaining a solution, and multidimensional unfolding
procedures are still especially prone to degeneracy and nonoptimal solutions.
Delbeke used Gleason’s (1967) algorithm (Delbeke, 1968, pp. 101-5).
The data were reanalyzed by Roskam’s!> (1968) procedure which is prob-
ably the most robust presently available. This was applied to the preference-
score data, and solutions were sought in 3 and 2 dimensions.

The solutions for male and female were once again virtually identical,
and therefore analysis was run on the full 80 cases. The two-dimensional

L4yor example, the person’s ordering is assumed to be in the same metric, but
orderings from different individuals are not considered comparable.
158ee Roskam (1969, 11, pp. 18-21) and Lingoes and Roskam (1971).
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Fig. 2. Family composition preferences: Male and female subjects. Internal analy-
sis, distance model (unfolding). 2-dimensional solution.

solution is presented in Fig. 2.16

The most striking feature of the 2-dimensional distance representation
(unlike the vector representation} is the obvious salience of the defining
characteristics of the stimuli—the number of sons, and the number of
daughters.17

In terms of their definition, the stimuli are arranged in the form of a
regular semilattice like that presented in Fig. 3a. These “dimensions” are
clearly discernible, in a somewhat distorted and correlated form, in the
unfolding analysis solution in Fig. 2; they are by no means so evident in
Delbeke’s solution (p. 164). Compared to the defining, “‘rational” configura-
tion, the one produced by the scaling analysis is systematically distorted:

(i) There seems to be no consistent pattern in the size of the prime
intervals along the “number of sons” (S) and “number of daugh-
ters” (D) dimensions. In particular, the size of subjective family-size
differences do not systematically decrease; in D, the intervals are
fairly equal (except for the last) and in S there are no consistent
differences in size of interval.

(ii) While the § “dimension” is fairly linear, the D “dimension” is
markedly curvilinear, although it is approximately linear in the very
small values.

16The badness-of-fit measure for such data (stress; based on Kruskal's fitting

quantities) is .69 for 3 dimensions, and .124 (for 2 dimensions). On several criteria, the

two-dimensional fit is acceptably low, and certainly gives a more interpretable result than
that for 3 dimensions.

17The two “objective™ properties of “number of sons” and “number of daugh-
ters” were separately fitted as vectors in the stimulus space of the distance modei
according to Chang and Carroll’s (1970} procedure, involving maximising the lincar
correlation between stimulus coordinates and external property values for these stimuli.
The “number of sons” fitled vector correlated very highly (926} with stimulus
coordinates, as did the “number of daughters” (.928).
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Fig. 3A. Family composition: Rational configuration of stimuli in terms of

number of sons and number of daughters.
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Fig. 3B. Family composition. Rational configuration of stimuli in terms of
Coombs’ number of children and preponderance of sons (45° rotation of number of sons

and number of daughters).

(iii) Despite the dependence between S and D, and the nonlinearity of
D, the relative positioning of the smaller, mixed family-composition,
stimuli is not badly distorted. But the larger family-sizes which are
equally mixed in terms of sex composition, virtually collapse on to

the same point.
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Do these “distortions” represent genuinely psychological processes, or
are they methodological artefacts? Unfortunately, the latter cannot be ruled
out.

Models which fit both stimulus points and subjects points (or vectors)
simultaneously are particularly sensitive to’ the distribution of subjects’
judgments, and in order to fix stimulus points reliably, it is necessary to
ensure an adequate number of cases and spread of ideal points or vectors. But
mixed-composition, large family-size stimuli are very extensively preferred in
these data, as we have seen. The multidimensional unfolding solution must
consequently locate these stimuli close to the center of individual ideal points,
giving rise to the “collapsing distortion” noted in (iii) above. Whenever
uneven, heavy, concentrations of individual preferences occur, major distor-
tions are likely in fixing the location of stimulus points. For this reason it
would be hazardous to read too much into the solution.

Nonetheless the simplicity of the distance representation is appealing,
not least because it allows the separate ““mixture’” dimension so evident in the
vector representation to be dispensed with and interpreted as a straightforward
combination of the “number of sons” and “number of daughters” dimensions
of the distance-representation.

3. EXTERNAL ANALYSIS OF THE DATA

The unfolding model of preference implicitly assumes that subjects agree
in their cognitions ¢f the objects being judged, and that the main source of
individual variability is the different evaluations which subjects give to the
stimuli. But, if subjects differ in their perceptions of the stimuli as well as in
their evaluations of them, then an unfolding analysis will not be able to
recover the cognitive space correctly, and it will not be possible to decide
whether the reason for the badness of fit is due to differential perception, or
to the fact that the distance model is not appropriate.!8 To mirror this fact,
Carroll (1972, p. 114) proposed a distinction between models for the internal
analysis of preference data such as Coombsian unfelding (where both stimuli

“and subjects are parameterized from the same set of preference data) and
external analysis (where the preference data are fitted in an independently
derived space). In many cases of preference analysis, an independent set of
judgments of similarity between the stimuli is made by the same subjects, and
can be scaled to obtain such an a priori cognitive space.!?

However, separate similarities data are not available in this study. But

181§ considerable differences in perception do exist, then the results from an
unfoiding analysis may lead, quite incorrectly, to abandoning a distance model. It might
be that all subjects’ preferences are in fact a monotone function of the scparation of
their ideal points and the stimuli points, but that the distances refer to different cognitive
spaces.

195 considerable, systematic, individual differences in perception are then found
to exist, further analysis can be done within each group of subjects having relatively
homogeneous perceptions.
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there is no reason why the a priori space must be derived from similarities—
any external configuration which can be related meaningfully to the prefer-
ence data may be used. In this case, since the stimuli are defined in terms of
the composition of two “objective” or “physical’” variables, and we know that
a two-dimensional representation does not seriously distort the subjects’
judgments, the semilattice-structure presented in Fig. 3 can act as the a priori
space.

How do the subjective preferences relate to the “objective” character-
istics of the stimuli represented by the semilattice?2% Carroll (1972) devel-
oped a hierarchy of four external models for “preference mapping” (collec-
tively referred to as PREFMAP} which both generalises and particularises
Coombs’ unfolding distance model for mapping preference data:

Model allows:

Phase or Differentiat  Differential  Differential
level of rotation of weighting location of
PREFMAP Name of model axes of axes ideal points

I General unfolding + +

11 Weighted unfolding - + +

i1 Simple unfolding (Coombs) - +

v Vector - - -

Formulated in most general terms, the preference scale values of individual 7
for stimulus j(sy) are assumed to be a function of the (squared) distance
between his ideal point y; and the stimuli locations x;:

55 = F(d?}) =q; t bd?] + ey (b= 0).

The four models or levels of the PREFMAP hierarchy are distinguished in
terms of how the squared distances (d};) are defined. In Level I subjects are
permitted (i) to rotate the reference dimensions of the space and, (i) then
differentially weight them. As Carroll describes it:

We allow distinet individuals additional freedom in choosing a set of
‘reference axes’...and then to weight differentially the dimensions defined
by this rotated reference frame, in addition to being permitted an idio-
syncratic ideal point. (Carroll, 1972, p. 120).

A subject is assumed to apply his own orthogonal rotation T; to the axes in
which both the stimuli and ideal points are located, and then weight the
rotated dimensions. If x% represents such transformed stimulus coordinates,
i the transformed ideal point coordinates, and w,, represents the evaluative
weight applied to dimension a then:

sij = Fi (df;

208¢rictly, it should be possible to perform a two-stage analysis, first enquiring
how subjects” similarities data relate to the physical attributes and secondly enquiring
how the preferences relate to the cognitions (the usual external analysis).
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where

2 - * 2
dfj - anfa 0’!‘0 - xj* s

ie., a Euclidean distance in an individually-rotated and weighted “private
space.”

In Level II individual rotations are excluded, but a subject is assumed
simply to apply an evalvative weight wy, to each dimension, so that

sij = F; (df)
where now,
dl?j = ZWia Wia - xja)2’

ie., a Buclidean distance in a weighted or differentially scaled “private space.”

In Level lll—a simple Coombsian Unfolding case—subjects are each
represented by an ideal (most preferred) point in the co%nitive space.2! The’
closer a stimulus is to an individual’s ideal point, the more he will prefer it.
Since differential weighting is excluded, a given difference on a particular

dimension is assumed in this model to have the same meaning and contribute
identically to the overall distance for every subject, so that

si = F; (d})
where now,
d?j =%, (yia - x,r'a)zy

i.e., the normal Euclidean distance metric.
In Level 1V, the preferences are assumed to be a simple finear function

of the stimuli values themselves:
S = a; v Labiaxjg

and this becomes the external analogue to the vector model encountered

earlier.22
Since in the metric version of the PREFMAP models a subject’s

preferences are assumed to be linearly?? related to the (weighted, transformed
or simple) distances between the stimuli locations and his ideal point,

2l1n fact, the PREFMAP version of unfolding analysis permits subjects to be
represented as having negative (“anti-ideal™) points on one or more dimensions. Where this
occurs, the subject’s preference function is interpreted as U-shaped, containing a single
minimum, indicating his point of least preference on the dimension concerned. No negative
values occurred in this analysis. -

22Carroll (1972) has proved that the vector model is a special case of the simple
distance (unfolding) model. As -an ideal-point of the distance mode! is moved further and
further out from the origin of the space, a circular isopreference contours {(joining points
of equal preference for this subject) more and more closely approximate straight lines in
the vicinity of the stimuli points; and isopreference *‘contours™ in the vector model
consist of precisely such straight lines, perpendicular to the subject’s vector.

23In the program’ implementing the PREFMAP models an option also exists for
the nonmetric {i.e., monotonic) regression of preference values on the model distances (or
projections on the subject vector in the casc of model 1V).
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product-moment correlations between a subject’s preference values and those
estimated in terms of a particular model can be calculated to provide a useful
measure of individual goodness of fit. Moreover, since each model is a special
case of the higher one in the hierarchy, it is possible to use variance analysis
to test whether the more general model explains a significantly greater amount
of variation than the more particular one.

It seemed reasonable to assume that the source of greatest individual
variation in family size preferences would be the sex of the subject. Hence
subjects were again divided into male and female groups, and analyzed
separately.

The data were analyzed in terms of Carroll and Chang’s hierarchy of
four preference-mapping models (PREFMAP). Both metric and nonmetric
fitting functions were employed.24 The overall goodness of fit measures of
the models for the *‘average subject” of each group are presented in Table 2.

Two things ar¢ particularly notable about the PREFMAP analysis—the
high overall correlations, and the very marked superiority of the distance
models over the vector model for explaining these data, in terms of the
rational configuration. Moreover, the ingcrease in goodness-of-fit from the
simple (Ii) to the weighted (1T} distance model is so marginal that the simple
distance icpodel can be taken unequivocally to be the appropriate model;
differentially weighted dimensions are not necessary for explaining these
subjects’ preferences. To summarise:

(1) The overall (root mean square)} correlations show excellent fit of the
data to all the distance modeks (ie., except for the vector Model
IV). This holds for both male and female groups, and for the metric
and nonmetric versions of the models. Moreover, the individual
correlations (not presented here) are uniformly and consistently
high, except in the case of the vector model, where considerable
differences are evident.

(2} Among the distance models, the simple distance (unfolding) model
has only marginally lower correlations than the weighted and general
distance models. There is no need to invoke differential (idio-
syncratic) weighting or rotation of axes in order to account for
subjects’ preferences.

(3) In the vast majority of cases, the goodness-of-fit (F-ratic) values
indicate that Model Il (simple distance) fits individual subject’s
preference data very significantly better?S than Model IV (vector).
With the possible exception of one case, every subject should be
assigned to the simple distance model.

240pti0ns used included normalising prefercnce values 1o unity in all analyses,
and, in the nonmetric analyses, using a difference criterion of .001 and primary approach
to ties in the block-monotene fitting function.

25AHl the individual F-values very considerably exceed the critical ratio of 8.53
(for dfl = 1, df2 = 186, significance level of .01) except for 1 male (p > .10} and 2 females
(.01 <p < .05).
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TABLE 2
Goodness of Fit between Data and PREFMAP Models

(a) Correlations {average subject)

Metric Nonmetric
Male Female Male Female

Model rms? Min Max rme? Min Max rms? Min Max rms? Min Max

I .9368 .9141 .9934 .9478 .7994 9922 .9%04 .9178 .9993 9868 .9350 .9995
II  .9446 .7852 9933 .9447 .7932 .9907 .9904 .8832 .9995 .9858 .9049 .9998
I 9415 .7832 .9932 9356 .7919 9904 .9885 .8796 .9995 .9812 .9056 .9995
IV 6135 .1530 .9844 .7004 .1440 .9080 7821 .4085 .9978 .8389 .5933 9915

2Rgot mean square.
(b) Analysis of variance between models

Male Female Male Female
Signif- Signif- Signif- Signif-
Model (df) F-atio icance  F-ratio icance Fratio icance Fratio icance
L1149 0.0005 ns 0.00i4 s 1.7375 ns -.1876 ns
ILITI(L,15) 0.0019 ns 0.0008 »ns 2.6602 ns 59793 s

HLIV(1,16) 195.0966<.001 202.5904 < .001 1737.4939 <.001 563.1711 <.001

The simple distance solution is presented in Fig. 4, for the metric case. The
main point of interest in the external analysis is no longer the rela}tive
positioning of the stimulus points, but the location of the subject points.
First, there is little distinction to be made between the male and female
distributions of ideal points—if anything, females tend on average to prefer
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Fig. 4. Family composition preferences embedded in rational configuration accord-
ing to PREFMAP, simple distance model (external analysis.)

somewhat larger family sizes than males, and there is a slight tendency for
them to prefer boys to girls. More striking than the differences are the
similarities, Once more, the location of the distribution of ideal points
emphasizes the salience of equally-mixed sex-compeosition in the preferences of
these subjects.

In view of these results, little more can be said about the “multidimen-
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sional psychophysics” guestion—the data fit the simple unfolding model so
well that the conclusion must be that, at least for these subjects, there is little
need to invoke systematic individual differences in cognition of family-size
and sex composition. Moreover, the preferences can be quite adequately
interpreted in a directly Coombsian manner, as a simple function of the
proximity between the subject’s most preferred location on the two constitu-
ent *‘physical” dimensions (defining his ideal point} and the locations of the
stimuli.

4. CONCLUSION

The reason why the distance model gives a much better fit to the data
than the vector model is probably related to the assumptions which each
mode} makes about how information is combined into overall preferences. The
distance function in this case provides a more acceptable subjective composi-
tion-rule than the vector model for combining the number of sons and
nuthber of daughters information—namely that differences on each dimension
combine additively to produce the similarity (preference) judgment.

Shepard (1964, p. 270) argues that compressing multidimensional infor-
mation into an overall decision consists of two distinct problems—the specifi-
cation of* the rules of combination, and the problem of assigning appropriate
weights to the component factors. The second problem does not seem to arise
here—from the results of Model 11, equal weighting of the two dimensions

seems to hold for each subject. However, the fact that a Fuclidean distance
model produced such excellent goodness of fit is hard to explain. Attneave

{1950), Torgerson (1952), Shepard (1964) and Hyman and Well (1967) argue
that where dimensions of judgment are particularly salient or culturally
obvious (and are few) the much simpler “city block™ distance metric (which
simply asserts that absolute differences on dimensions combine in an additive
way to produce the dissimilarity judgment) provides a better fit, and is more
appropriate. A priori this argument would seem to apply to these data—after
all, few sociological data have such clear and perceptually distinct dimensions.
But as PREFMAP is currenily programmed, the hypothesis of the greater
applicability of the city-block metric could not be tested.

There is one interpretation which suggests that the Buclidean metric
may, after all, be appropriate. Hake and Rodwan (1966, cited in Hyman and
Well, p. 347) and others have suggested that the property of rotational
invariance peculiar to Buclidean space is “a highly adaptive property for an
organism that seeks invariance and stability in its perceptual world,” and
Hyman and Well (p. 247) argue that “the more two component dimensions
interact, the more the appropriate spatial model will deviate from the city
block metric.” In slightly reworded form, “interaction™ referred to by Hyman
and Well, and by the Coombs, and evident in the present analysis, is the
“mixture” phenomenon already noted. Two pieces of information support this
interpretation:

(i) Dimensional interaction was evident in the fact that the “number
of sons” and “number of daughters” vectors are nonorthogonal in
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the internal analysis of these data.

(i)) When the data were analyzed by level I of the PREFMAP hierarchy
(the General Unfolding Model) the vast majority of individual
rotations took the form of a clockwise rotation28 of the rational
configuration through between 40° and 50°, and the optimal
rotation is in the vicinity of 45°. However, if the dimensions
defining the “rational configuration™ in Figure 3a are rotated in this
way, it becomes clear that the new dimensions correspond respec-
tively to number of children (S + D), and predominance of sons (S
- D). (This is illustrated in Fig. 3b). These rotated dimensions
correspond precisely to the two variables which enter the Coombs’
Model II, and which, they argue, provide a theory which is sub-
stantively and methodologically superior to one based upon the
number of sons and number of daughters. [t would seem that
empirical analysis supports measurement-theoretic analysis in this

instance.
This leaves untesolved the theoretical question of what composition-

function provides the best explanation of the preferences. The Coombs’ model
of simple additive composition is, of course, a good deal simpler than that
implied by the distance model, although their Model II can be interpreted as a
special case of one particular distance model (namely, a city-block metric
distance within the rotated dimensions). But the theoretical question cannot
be settled by a scaling analysis.

These considerations highlight what is probably the most significant
point of this analysis—recently developed models in multidimensional scaling
and related areas allow for more sophisticated analysis than our data can
usually support. In particular, the substantive presuppositions of the models
are surprisingly strong and testable, and yet they cannot be tested without
independent evidence. Decision-making about family size lends itself well to
systematic experimental research and theoretical development. Moreover, the
study of how relevant information is in fact combined will yield rich
comparative data for other, more diffuse, areas of social cognition and

evaluation.

26The (clockwise) angle of rotation of the configuration presented in Fig. 3a for
the “average subject”™ in Level 1 is, for males: 68° (metric) and 54° (nonmetric); for
females: 42° (metric) and 43° (nonmetric).
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