THE METHOD OF COMPUTATION in MDPREF

- Given \mathbf{N} subjects and \mathbf{p} stimuli, we define a first-score matrix S (N x p)

$$
\mathbf{S}=\{\mathbf{s}(\mathrm{i}, \mathrm{j})\}
$$

of N subjects' ratings or rankings of the p stimuli (the data).

- The solution, consists of the two solution matrices

$$
X=\{x(i, a)\} \quad i \quad=1,2, \ldots N ; a=1,2 \ldots . r)
$$

(a configuration of N subject vectors in an r-dimensional space), and

$$
Y=\{y(j, a\}\} \quad J=1,2, \ldots p ; a=1,2, \ldots r
$$

(a configuration of p stimulus points an r-dimensional space).

- The data are related to the solution by means of a (fitted) second-score score matrix, $\mathbf{S}^{*}(\mathbf{N} \times \mathrm{p})$:

$$
\begin{aligned}
& \mathbf{S}^{*}=\left\{\mathbf{S}^{*}(\mathrm{i}, \mathrm{j})\right\}=X . Y, \text { and } \\
& \left.\mathbf{S}^{*} \approx \mathbf{S} \quad \text { (i.e. } \mathbf{S}^{*} \text { is a LS fit to } \mathbf{S}\right)
\end{aligned}
$$

[^0]- The solution is obtained by factoring (singular-value decomposition) s.t.

$$
\begin{aligned}
\mathbf{S}^{*} & =\mathbf{U} \beta \mathbf{V}^{\prime} \\
& =\mathbf{U}_{\mathrm{r}} \beta_{\mathrm{r}} \mathbf{V}^{\prime}{ }_{r}
\end{aligned}
$$

consisting of the first r columns of U and of V ' respectively.
The solution-matrices are then given as:

$$
X=U_{r} \beta_{r} ; \text { and } Y=\beta_{r} V_{r} \text { resp. }
$$

- This is an Eckart-Young factorization:

U is a matrix with eigenvectors of SS' as its cols.
V has as its columns the eigenvectors of S'S
β is a diagonal matrix of the corresponding eigenvalues, $\lambda(\mathbf{j})$.

- If the eigenvalues are ordered acording to decreasing size, then X and Y (of rank r) give the best LS approximation to S^{*}.

[^0]: ${ }^{1}$ This is based on Carroll (1964); see also MDS (X) Users' Guide and User Manual

